• Title/Summary/Keyword: Free-form fabrication

Search Result 40, Processing Time 0.026 seconds

A Case Study on the Project Benefit of Digital Fabrication in Construction Projects (건설 프로젝트에서 디지털 패브리케이션의 프로젝트 이점에 대한 사례 연구)

  • Jung, Eui-Seok;Kim, Sung-Jin;Ham, Nam-Hyuk;Moon, Sung-Kon;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.29-40
    • /
    • 2018
  • Recently, the free-form buildings are continuously increasing in the world. However, due to the shortage of experience and technology in the project of the free-form buildings, problems such as increase of construction cost, increase of air and deterioration of construction quality are occurring. In this study, data on the 27 free-form projects in Korea and abroad using digital fabrication were collected through the journals, reports, articles, and websites of the institutes and case studies were conducted based on the collected data. Based on the following case analysis, we conducted evaluation of case data analysis based on the knowledge domain specified in PMBOK. Evaluation of case data analysis shows that the application of digital fabrication is divided into positive and negative effects for each knowledge area in the free-form building project. Using the results of the analysis, we can confirm the knowledge field showing the positive effect on the free-form building project by using digital fabrication. However, the data scale of the project using the digital fabrication is not realized at present and research is insufficient. In Korea, a small number of specialists were interviewed and verified because experts do not exist much in korea. Therefore, this study is expected to suggest the necessity of applying digital fabrication in the free-form building projects in the construction industry.

Fabrication of 3D PCL/PLGA/TCP Bio-scaffold using Multi-head Deposition System and Design of Experiment (다축 적층 시스템과 실험 계획법을 이용한 3차원 PCL/PLGA/ICP 바이오 인 공지지체 제작)

  • Kim, Jong-Young;Yoon, Jun-Jin;Park, Eui-Kyun;Kim, Shin-Yoon;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-154
    • /
    • 2009
  • In recent tissue engineering field, it is being reported that the fabrication of 3D scaffolds having high porous and controlled internal/external architectures can give potential contributions in cell adhesion, proliferation and differentiation. To fabricate these scaffolds, various solid free-form fabrication technologies are being applied. The solid free-form fabrication technology has made it possible to fabricate solid free-form 3D microstructures in layer-by-layer manner. In this research, we developed a multi-head deposition system (MHDS) and used design of experiment (DOE) to fabricate 3D scaffold having an optimized internal/external shape, Through the organization of experimental approach using DOE, the fabrication process of scaffold, which is composed of blended poly-caprolactone (PCL), poly-lactic-co-glycolic acid (PLGA) and tricalcium phosphate (TCP), is established to get uniform line width, line height and porosity efficiently Moreover, the feasibility of application to the tissue engineering of MHDS is demonstrated by human bone marrow stromal cells (hBMSCs) proliferation test.

A Study on the Fabrication of Various 3D Microstructures using Polymer Deposition System (폴리머 적층 시스템을 이용한 다양한 3 차원 미세 구조물 제작에 관한 연구)

  • Kim, Jong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.686-692
    • /
    • 2012
  • Solid free-form fabrication (SFF) technology was developed to fabricate three-dimensional (3D) scaffolds for tissue engineering (TE) applications. In this study, we developed a polymer deposition system (PDS) and created 3D microstructures using a bioresorbable polycaprolactone (PCL) polymer. Fabrication of 3D scaffolds by PDS requires a combination of several devices, including a heating system, dispenser, and motion controller. The system can process a polymer with extremely high precision by using a 200 ${\mu}m$ nozzle. Based on scanning electron microscope (SEM) images, both the line width and the piled line height were fine and uniform. Several 3D micro-structures, including the ANU pattern (a pattern named after Andong National University), $45^{\circ}$ pattern square, frame, cylindrical, triangular, cross-shaped, and hexagon, have been fabricated using the polymer deposition system.

Experimental Study on the Lateral Pressure Resistance of Free-form Concrete Panel (FCP) Side Form (FCP(Free-form Concrete Panel) 측면 거푸집의 측압 저항능력 실험)

  • Youn, Jong-Young;Yun, Ji-Yeong;Lee, Chang-Woo;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.8-9
    • /
    • 2021
  • FCP requires different curvatures and shapes according to the method of division, and it is necessary to manufacture a formwork accordingly. FCP production equipment consists of CNC equipment and side shape control equipment. This can be implemented in various shapes of upper, lower, and side surfaces. In the side shape control equipment, it is implemented as a variable side formwork. Among the required performance of the variable side formwork, there is stiffness against side pressure, which needs to be verified. Therefore, in this study, the FCP fabrication experiment is conducted with the developed variable side formwork. By analyzing the error in the shape of the fabricated FCP, the lateral pressure resistance capability of the side form is measured and verified.

  • PDF

Fabrication of 3D Bioceramic Scaffolds using Laser Sintering Deposition System and Design of Experiment (레이저 소결 적층 시스템과 실험 계획법을 이용한 3차원 바이오 세라믹 인공지지체의 제작)

  • Lee, Chang-Hee;Sa, Min-Woo;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.59-66
    • /
    • 2019
  • In this study, we developed a novel laser sintering deposition system (LSDS) based on solid free-form fabrication (SFF) technology as it has the potential to fabricate complex geometries with controllable architecture for bone tissue engineering applications. The 3D biphasic calcium phosphate (BCP) scaffolds were fabricated with a pore size of 800㎛, a line width and height of 1000㎛, and an overall size of 8.2×8.2×8.0 mm3 according to the design of experiment (DOE) results. Additionally, an optimized manufacturing process using response surface analysis was established to fabricate 3D BCP scaffolds. The fabricated 3D BCP scaffolds were sintered at 950℃, 1050℃, 1150℃, and 1250℃ according to sintering processes with a furnace. As the sintering temperature increased, the porosity increased. Through the compressive strength test, the 3D BCP scaffolds sintered at 1050℃ presented good results of about 0.76 MPa. These results suggest that fabrication methods for 3D bioceramic scaffolds using LSDS may meet the basic requirements for bone tissue engineering.

Initial investigation of 3D free form fabrication Using Contour Crafting with the pivoting side trowel (적층조형설비(CC)을 이용한 3차원모형 제작에 대한 연구)

  • Kwon, Hong-Kyu;Hong, Jung-Eui;Chung, Soo-Suk
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.11a
    • /
    • pp.437-450
    • /
    • 2006
  • The Contour Crafting(CC) process, which has been developed at the University of Southern California, aims at automated construction of whole houses as well as sub-components. For this purpose, new trowel mechanism is basically needed in order to fabricate the true 3D shape. This paper presents our concepts and initial investigation of 3D free form fabrication using the pivoting side trowel. Specifically, the status of research and development of the processand experiments with ceramics materials, and its potential application areas are detailed.

  • PDF

A Study on the Concrete Extrusion Method for Precision FCP Fabrication (정밀한 FCP 제작을 위한 콘크리트 압출 방식 연구)

  • Kim, Hye-Kwon;Kim, Ji-Hye;Kim, Sungjin;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.133-134
    • /
    • 2023
  • Free-form buildings have a curved shape and are composed of geometric shapes, which require high precision. Therefore, this study proposed a new extrusion method, a piston method, that improves the precision of FCP by automatically extruding a predetermined amount of concrete by improving the aforementioned limitations. The technology to extrude a predetermined amount of concrete by applying pistons is expected to shorten construction period and increase economic efficiency by improving the precision and productivity of free-form panels.

  • PDF

Design and Testing of a Long Stroke Fast Tool Servo for Ultra-precision Free-form Machining (초정밀 자유곡면 가공용 long stroke fast tool servo의 설계 및 특성 평가)

  • Kim, Ho-Sang;Lee, Kwang-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.35-44
    • /
    • 2009
  • Long stroke Fast Tool Servo (LFTS) with maximum stroke of $432{\mu}m$ is designed, manufactured and tested for fabrication of optical free-form surfaces. The large amount of stroke in LFTS has been realized by utilizing the hinge and lever mechanisms which enable the displacement amplification ratio of 4.3. In this mechanism the peculiar shape was devised for maximizing the displacement of end tip in LFTS and special mechanical spring has been mounted to provide the sufficient preload to the piezoelectric actuator. Also, its longitudinal motion of tool tip can be measured by capacitive type displacement sensor and closed-loop controlled to overcome the nonlinear hysteresis. In order to verify the static and dynamic characteristics of designed LFTS, several features including step response, frequency response and cut-off frequency in closed-loop mode were experimentally examined. Also, basic machining result shows that the proposed LFTS is capable of generating the optical free-form surface as an additional axis in diamond turning machine.

Solid freeform fabrication and its application to tissue engineering (자유 형상 제작 기술 및 이의 조직 공학 적용)

  • Kang, Hyun-Wook;Lee, Jin-Woo;Kim, Jong-Young;Cho, Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1415-1418
    • /
    • 2008
  • Scaffold fabrication for regenerating functional human tissues has an important role in tissue engineering, and there has been much progress in research on scaffold fabrication. However, current methods are limited by the mechanical properties of existing biodegradable materials and the irregular structures that they produce. Recently, Solid freeform fabrication (SFF) technology was remarked by fabricating 3D free-form micro-structures. Among SFF technologies, we tried to fabricate scaffolds using micro-stereolithography which contain the highest resolution of all SFF technologies and precision deposition system which can use various biomaterials. And we developed the CAD/CAM system to automate the process of scaffold fabrication and fabricate the patient customized scaffolds. These results showed the unlimited possibilities of our SFF technologies in tissue engineering.

  • PDF