• Title/Summary/Keyword: Free surface wave

Search Result 533, Processing Time 0.025 seconds

Fluid-structure interaction analysis of sloshing in an annular - sectored water pool subject to surge motion

  • Eswaran, M.;Goyal, P.;Reddy, G.R.;Singh, R.K.;Vaze, K.K.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-201
    • /
    • 2013
  • The main objective of this work is to investigate the sloshing behavior in a baffled and unbaffled three dimensional annular-sectored water pool (i.e., tank) which is located at dome region of the primary containment. Initially two case studies were performed for validation. In these case studies, the theoretical and experimental results were compared with numerical results and good agreement was found. After the validation of present numerical procedure, an annular-sectored water pool has been taken for numerical investigation. One sector is taken for analysis from the eight sectored water pool. The free surface is captured by Volume of Fluid (VOF) technique and the fluid portion is solved by finite volume method while the structure portions are solved by finite element approach. Baffled and un-baffled cases were compared to show the reduction in wave height under excitation. The complex mechanical interaction between the fluid and pool wall deformation is simulated using a partitioned strong fluid-structure coupling.

An Application of the Localized Finite Element Method to 3-dimensional Free Surface Wave Problems (3차원 자유표면파 문제에서의 국소유한요소법의 응용)

  • K.J.,Bai;Se-Eun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.1-8
    • /
    • 1987
  • In this paper, the localized finite element method(LFEM) is applied to 3-dimensional ship motion problems in water of infinite depth. The LFEM used here is based on the functional constructed by Bai & Yeung(1974). To test the present numerical scheme, a few vertical axisymmetric bodies are treated by general 3-dimensional formulation. The computed results of hydrodynamic coefficients for a few vertical spheroids and vertical circular cylinders show good agreement with results obtained by others. The advantages of the present numerical method compared with the method of integral equation are as follows; (i) The cumbersome existence of irregular frequencies in the method of conventional integral equation is removed. (ii) The final matrix is banded and symmetric and the computation of the matrix elements is comparatively easier, whereas the size of the matrix in the present scheme is much larger. (iii) In the future research, it is possible to accommodate with the nonlinear exact free surface boundary condition in the localized finite element subdomain, whereas the linear solution is assumed in the truncated(far field) subdomain.

  • PDF

Appearing Condition of Breaking Waves at Infant Stage and Numerical Simulation (쇄파의 초기단계 생성조건과 수치시뮬레이션)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.873-879
    • /
    • 2009
  • The steady breakers at an infant stage are investigated through the numerical simulation. The appearing condition and characteristics of the sub-breaking waves are reviewed by analysing bow waves. The instability analysis is possibly done through the relationship between the free-surface curvature and circumferential force, which is obtained from the momentum equations. Navier-Stokes equations are solved by a finite difference method where the body-fitted coordinate system, the wall function and the advanced mesh system are invoked. The numerical result shows that the gradient of M/$U_s$ is greatly influenced by the Froude number and the decrease of M/$U_s$ indicates that the flows are unstable. Additionally flows with plunging or spilling are simulated successfully, but the application of breakers to the severely broken wave still remains to be settled in the future.

Comparisons of Hydrodynamic Characteristics of Superyacht with Respect to the Variation of Hull Form (자유수면을 포함한 수퍼요트 주위의 점성유동 해석)

  • Kim, Tae-Yun;Hyun, Beom-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.337-343
    • /
    • 2008
  • There are various hull types on the mid-size superyachts around $30\;{\sim}\;45m$. In any case, it is important to design the proper hull shape in viewpoint of the reduction of wave resistance, because small vessels such as superyachts are running at relatively higher Froude Number than other merchant ships. FLUENT with a VOF option was employed to investigate the flow fields around the superyachts having three-typical hull types: U-, V-types and catamaran. Overall performances including free surface flow were compared to figure out hydrodynamic characteristics of superyachy by numerical simulation.

Numerical study of ship motions and added resistance in regular incident waves of KVLCC2 model

  • Ozdemir, Yavuz Hakan;Barlas, Baris
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.149-159
    • /
    • 2017
  • In this study, the numerical investigation of ship motions and added resistance at constant forward velocity of KVLCC2 model is presented. Finite volume CFD code is used to calculate three dimensional, incompressible, unsteady RANS equations. Numerical computations show that reliable numerical results can be obtained in head waves. In the numerical analyses, body attached mesh method is used to simulate the ship motions. Free surface is simulated by using VOF method. The relationship between the turbulence viscosity and the velocities are obtained through the standard ${\kappa}-{\varepsilon}$ turbulence model. The numerical results are examined in terms of ship resistance, ship motions and added resistance. The validation studies are carried out by comparing the present results obtained for the KVLCC2 hull from the literature. It is shown that, ship resistance, pitch and heave motions in regular head waves can be estimated accurately, although, added resistance can be predicted with some error.

Motion Characteristics for Submarine Sections m Beam Sea (횡파 중 수중함 단면에 대한 운동 특성)

  • LEE HO-YOUNG;KWAK YOUNG-KI
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.78-82
    • /
    • 2005
  • The motion response results of a submerged submarine section in waves are presented. The numerical method is based on Cauchy's integral and 3 degrees-of-freedom motions of submarine sections are calculated in two dimensions, in regular waves. The fully nonlinear free surface and body boundary conditions are applied to the present problem, and the viscous effects on the submarine are modeled by Morison's formulas. The motions of submarine sections in beam sea are directly simulated and the effects of wave frequency, snorkel depth, and bridge are discussed.

Hydrodynamic Forces produced by the Swaying Oscillation of Cylinders with Chine Sections on the Free Surface. (배골형단면(背骨型斷面) 주상체(柱狀體)의 좌우동요(左右動搖)에 있어서의 동유체역학적(動流體力學的) 힘에 관하여)

  • J.H.,Hwang;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 1974
  • Hydrodynamic forces and moments produced by the swaying oscillation on the free surface were exactly calculated by Ursell-Tasai method for the cylinders with Kim's chine form sections and the sway responses of the cylinders of those chine form sections among the regular beam sea were also calculated. The results of the computation were compared with those of Lewis form sections. It is concluded that the effects of the section form on the added mass, and damping are small, if the section forms had same beam-draft ratio and sectional area coefficient in the case of sway motion. It is also known that the above little effects of section shapes on the basic hydrodynamic forces do not effect on the sway motion responses of cylinderical bodies among the regular beam sea. The sway motion responses of cylinderical bodies are varied linearly with the wave numbers.

  • PDF

Fabrication and Characterization of Free-Standing DBR Porous Silicon Film

  • Um, Sungyong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Distributed Bragg reflector porous silicon of different characteristics were formed to determine their optical constants in the visible wavelength range using a periodic square wave current between low and high current densities. The surface and cross-sectional SEM images of distributed Bragg reflector porous silicon were obtained using a cold field emission scanning electron microscope. The surface image of distributed Bragg reflector porous silicon indicates that the distributions of pores are even. The cross-sectional image illustrates that the multilayer of distributed Bragg reflector porous silicon exhibits a depth of few microns and applying of square current density during the etching process results two distinct refractive indices in the contrast. Distributed Bragg reflector porous silicon exhibited a porosity depth profile that related directly to the current-time profile used in etch. Its free-standing film was obtained by applying an electro-polishing current.

Hybrid finite element model for wave transformation analysis (파랑 변형 해석을 위한 복합 유한요소 모형)

  • Jung Tae Hwa;Park Woo Sun;Suh Kyung Duck
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

Lift of and Wave Breaking behind a Moving Submerged Body with Shallow Submergence

  • Lee, Seung-Joon;Kim, Hyoung-Tae
    • Journal of Hydrospace Technology
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • We consider the following two questions mainly in this study. First one is how the free surface hayes affect the lift of a shallowly submerged moving body. For this matte., we reinterpret the theoretical results of Kochin(1936), and point out that the high Froude number approximation is not always on the safer side. Second one is what sort of dimensionless parameters determine the occurrence of wave breaking behind a moving submerged body. Temporarily before getting a better answer, we propose that the two-parameter-plane, namely, the plane of the Froude number and the square root of the ratio of the submerged depth and the body length, may be used for predicting the possibility of wave breaking behind the submerged body. A region in the parameter plane is put forth as that of wave breaking, and the validity of this proposal is shown by its agreement with the existing experimental data of Parkin et al(1955) and those of Duncan(1983). Finally, linear and nonlinear numerical results are compared with the existing experimental data to see in what range of the parameters the linear and nonlinear theory case predict the wave field and the pressure on the body with reasonable accuracy. However, since the experimental data, which offer both the pressure and wave elevation for a submerged moving body, are very scarce, much cannot be attained through this comparative study. Hence, it is strongly recommended to carry out well planned experiments to get such data.

  • PDF