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Lift of and Wave Breaking behind a Moving
Submerged Body
with Shallow Submergence

Seung-Joon Lee! and Hyoung-Tae Kim !

Abstract

We consider the following two questions mainly in this study. First one is
how the free surface waves affect the lift of a shallowly submerged moving body.
For this matter, we reinterpret the theoretical results of Kochin(1936), and point
out that the high Froude number approximation is not always on the safer side.
Second one is what sort of dimensionless parameters determine the occurrence
of wave breaking behind a moving submerged body. Temporarily before getting
a better answer, we propose that the two-parameter-plane, namely, the plane
of the Froude number and the square root of the ratio of the submerged depth
and the body length, may be used for predicting the possibility of wave breaking
behind the submerged body. A region in the parameter plane is put forth as that
of wave breaking, and the validity of this proposal is shown by its agreement with
the existing experimental data of Parkin et al(1955) and those of Duncan(1983).
Finally, linear and nonlinear numerical results are compared with the existing
experimental data to see in what range of the parameters the linear and nonlinear
theory can predict the wave field and the pressure on the body with reasonable
accuracy. However, since the experimental data, which offer both the pressure
and wave elevation for a submerged moving body, are very scarce, much cannot
be attained through this comparative study. Hence, it is strongly recommended
to carry out well planned experiments to get such data.

1 Introduction

There have been numerous works on the lift, and on the distribution of the pressure
acting on the surface, of a hydrofoil moving near the free surface. One of the most
extensive and fundamental works was done by Kochin(1936, translated into English in
1951), who assumed that the depth of submergence is large and accordingly that the
boundary condition on the free surface can be linearized. Then he obtained various
analytical results regarding the lift and the wave drag of the hydrofoil by using the
theory of analytic functions.

Another cornerstone was set up by the experimental work of Parkin, Perry and
Wu(1955, hereafter will be denoted as PPW). They reported that there are two regimes
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of Froude number(F}, = %, U is the speed of the body, g the gravitational acceleration,
L the body length, respectively], namely, 'the high F,’ and "the low F},’. They observed
that for the high F,, the phenomenon of wave breaking after the hydrofoil did not
occur, while for the low F, it did. They also measured the pressure distribution on the
hydrofoil surface for various cases of F,, and the depth of submergence, and showed
that there are many aspects of the flow phenomena which are not easy to understand
at least from the academic point of view.

Duncan(1983) carried out a nice set of experiments through which he obtained the
data of the free surface elevations and the horizontal velocity profile at a vertical plane
produced by a moving submerged hydrofoil with an angle of attack. He also showed
that by the wake survey measurements the drag associated with wave breaking reached
more than three times the maximum wave drag predicted by a theory, which does not
include the effect of the wave breaking. He said that the steady breaker following the
hydrofoil was produced when the wave slope was 17° or higher, but did not give any
further specific criterion for the occurrence of wave breaking in the trailing region.
Coleman(1986) numerically simulated the flow field corresponding to the experimental
setup of Duncan(1983).

Our interests here are focused upon two questions. One is how the free surface
waves affect the lift of the shallowly submerged moving hydrofoil, and the other is
what are the physical parameters determining the wave breaking occurrence behind
the hydrofoil.

2 Two questions

In order to answer to the first question mentioned in the section 1, let us consider the
result of the linear theory obtained by Kochin(1936). When a vortex of strength I'
[(+) when the rotating flow direction is clockwise] is located in a uniform stream of
speed U, its lift Y is given by

r r

_ K _okn ,
Y = pL(U — =+ —e ¥ Ea(2Kh)), (1)

where p is the fluid density, & the submerged depth, and K = #%. Here,

Ba(z) =R / g 2)

that is the real part of the complex exponential integral, for which the integration path
should be in the lower half plane. Since pUT is the Kutta-Joukowski lift, the other
terms may be called as the added lift Y, due to the presence of the free surface. Then
we may define the dimensionless added lift Y4 as

Y,

= m =—-1+4+ 4Kh€—2KhEi1(2Kh), (3)

Y4
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which is a function of Kh or the depth-based Froude number [F}, = —ﬁ = ﬁ, Kh =

F},7%] alone. We note that pI'?/4rh is a Lagally force due to the image vortex. Y, vs.
F}, is shown in Figure 1. There are 4 points of interests; a) maximum of Y, is 1.97 at
F, =0.81, b) Y, is zero at Fj, = 1.57, ¢) minimum of Y, is ~1.30 at F}, = 4.08, d) the
limit of Y4 as Fj — 00 1s —1. Since the added lift is positive when F}, is less than 1.57,
we may make use of this fact for the design purpose, when the flow condition allows
the use of linear theory.

Figure 1: Added lift of a vortex plotted against depth-based Froude number

Another interesting theoretical result is, when the free surface is present, a moving
submerged dipole of strength p is influenced by the lift Y; given as

2
Y, =— 8”;‘h3 (1+2Kh + (2Kh)? — (2Kh)%e 2K B (2KCh)), (4)
which can be rewritten in dimensionless form as
Yy 2 3_~2Kh
= —— = — h E; ,
Yp /SR [1+2Kh+ (2Kh) (2Kh)’e 1(2Kh)] (5)

that is again a function of Kh or Fj only. We show the curve of Yp vs. F}, in Figure
2. The pattern of the curve is similar to that in Figure 1, and the 4 interesting points
are as follows; a) maximum of Yp is 3.04 at F}, = 0.58, b) Y; is zero at F}, = 0.84, c)
minimum of Yp is —2.37 at F}, = 2.39, d) the limit of Y, as F}, — oo is —1. Considering
a circular cylinder, as a first approximation we may take 4 = JU L? where now L is
the diameter of the circular cylinder, then we see that

2
PH 1 o, L

gomt = P9I E(R) (6)
From these results, it is clear that there are two important dimensionless parameters

for a moving submerged body with circulation around it, namely F), and % The linear
L

theory is based upon the assumption, the ratio ¥ <« 1, and for most hydrofoils in

application the ratio is less than 0.5. Thus the linear theory is probably useful for
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practical design problems, but the high F, approximation may not be on the safer
side. For instance, say, when F, = 3.0, % = (.25, thus F} = 1.5, for which the value of
Yp is about —2, while that given by the high F,, approximation is —1.

Yo ]

Figure 2: Added lift of a dipole plotted against depth-based Froude number

Related to the second question, we discussed in the previous section two major
experimental works, i.e., PPW and Duncan(1983). PPW pointed out that F, and £
are important parameters. Duncan also reported that for a given body if the speed of
the body is kept constant the wave breaking begins to occur only when the submerged
depth decreases to a critical value. We show in the Figure 3 the cases treated by

PPW and by Duncan on the plane of two parameters, \/§ — F,. Here h denotes the
submerged depth measured from the undisturbed free surface to the trailing edge of
the hydrofoil and the points corresponding to those for which the wave breaking in the
trailing zone was reported are filled. Now, to make hypotheses on the criteria of the
wave breaking, let’s consider the following. If h is greater than a half of A, which is
the wavelength of the characteristic wave given by 27 F2L, the effect of the body on

the free surface should not be of significance. Thus, for F,, < 0.564@ , wave breaking
may signify little.

On the other hand, if A is less than %, corresponding to F,, > 1.784\/% , We may use
the assumption of the shallow water. Supposing that it is justifiable to take h as the

channel water depth, we may regard the flow supercritical in the sense of open channel

flow, since F, > \/% is satisfied in the cases under consideration. Then we may not

expect much wave action on the free surface for these cases, and in fact this claim is in
accordance with the observation of PPW. When these two straight lines are added in
Figure 3, we see that the cases encircled almost lie between them. Another part of the
criteria can be obtained by considering that when X is greater than 5L(F}, > 0.892) and
h is greater than L, the first trailing wave is so far from the body that the possibility
of wave breaking there should be close to nil.

All the conditions considered above are not the criteria for the wave breaking itself
but those for the heavy or weak influence of the body presence on the free surface waves
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Figure 3: Experimented cases on —Z— — F,, plane

in the trailing zone. Hence, the conditions stated above are not supposed sharply ap-
plicable, but replaceable by more sound and accurate ones, and at the moment they
are hoped to be used as a quideline for the wave breaking.

3 Example calculations

Although Coleman(1986) and others have computed numerically the surface waves
generated by moving submerged hydrofoils, it is not clear yet how the wave breaking
phenomena show up in the numerical computations and what the effect of the wave
breaking upon the pressure distribution on the hydrofoil is. Also the question that
in what range of parameters the linearization is valid does not seem answered fully.
To shed some light on these questions, numerical computations were performed for
the cases which there exist experimental measurements, and the results are shown in
Figures 4 ~ 7.

Letting ¢(z, y) as the velocity potential, we used the following free surface boundary
condition(FSBC)

(1 + 2(£z)¢m + (K + 2&1y)¢y =0, ony =0, (7)

which was first suggested by Lee(1994), and called as the improved Poisson FSBC.
Here, ¢ satisfies ) )
¢zz+K¢y:07 0ny:07 (8)

that is linear and called as the Poisson FSBC. As the Kutta condition a variation of
the Morino-Kuo type was used, and a potential-based panel method was employed.
For the description of the present method we refer to Lee et al.(1993).
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In Figure 4 we compare the surface elevations obtained by the present method with
the two different FSBC’s given in (7) and (8) with the experimental data of Duncan’s for

F, = 0.567 and \/_%- = 1.153,1.098, 1.038, 0.997, respectively. Hereafter, in presenting
the wave elevations on the free surface as well as the pressure distributions on the
foil surface, all the legth scales are normalized by the chord legth L. In Duncan’s
experiment, when F, was kept constant surface waves in the trailing zone started to
break when \/g = 0.997. The numerical results with the improved Piosson FSBC also
showed wild behavior for the corresponding case as presented in the Figure 4(d). For
other cases the improved Poisson solutions (hereafter the solid curves in Figures) agree
better with the experimental data than the Poisson solutions(the dotted curves).

In Figure 5, the computed pressure distributions on the upper surface of the hy-
drofoil are compared with the experimental data of PPW for \/g = 0.5 and F, =
1.072,0.604, respectively. According to our criteria on the wave breaking, the breaking
{s expected to occur when F, = 0.604. For this case, the improved Poisson solution
got unbounded, but a bounded linear solution with the Poisson FSBC could be ob-
tained and gave reasonable values. For F,, = 1.072, for which the wave breaking is not
expected, the latter solution agrees better with the experimental data.

In Figure 6, we show the comparison for F, = 0.95, and \/g = 1.34,0.707, 0.447,

respectively. Again, the wave breaking is expected only when \/g = (.707, but obtained
was a bounded improved Poisson solution, which shows more discrepancy with the
experimental data than the linear solution. And we could not get a bounded solution for
\/% = 0.447, for which the linear solution agrees with the experiment reasonably well.

Furthermore, when \/% = 1.34, the linear solution agrees better with the experiment
than the improved Poisson solution.

In Figure 7, the comparison is presented when \/—% = 0.447, and F,, = 1.15,0.989,
0.617, respectively. Though the wave breaking is anticipated when F, = 0.617 only, no
bounded improved Posson solution was obtained for F,, = 0.989,0.617. And as in the
Figure 6 the improved Poisson solution is not much better than the Poisson one.

Since PPW did not say in which case wave breaking occurred, based upon the
comparison made above, nothing definite can be said about how the wave breaking
in the trailing zone affects the pressure distribution on the hydrofoil, and about the

performance of the numerical model we tested.

4 Concluding remarks

We discussed about some analytical results obtained by Kochin, and implied that for
most design problems these results can be usefully applied, and also that there are cases
when the high F,, approximation is not on the safer side. Then the criteria for the wave
breaking in the trailing zone were suggested in terms of two parameters, F;, and \/_%- , but
with the understanding that they can be made much sharper. Finally, some nonlinear
and linear numerica) results were compared with the existing experimental data, but so
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Figure 4. Free surface elevations (F), = 0.567).
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Figure 5: Pressure distribution on the suction side of a Joukowski hydrofoil(y/h/L =0.5)
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far we could not make any definite assessment on the performance of numerical models
tested.

To have better and clearer understanding of the wave breaking occurrence and its
effects upon the flow field, we think that more experimental data are necessary, espe-
cially those of the surface elevations and of the pressure distribution for the same case.
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