• Title/Summary/Keyword: Free surface vortex

Search Result 116, Processing Time 0.029 seconds

Computation of Pressure Fields in the Lagrangian Vortex Method (Lagrangian 보오텍스 방법에서의 압력장 계산)

  • 이승재;김광수;서정천
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • In the Lagrangian vortex particle method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations, a numerical scheme for calculating pressure fields is presented. Implementation of the numerical method is directly connected with the well-established surface panel methods, just by dealing with the dynamic coupling among vorticity field. Assuming the vorticity and the velocity fields are to be calculated in time domain analysis, the pressure calculation for a complete set of solution at present time step is performed in a similar way to the one used in the Eulerian description. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsive started circular cylinder for Reynolds number 550. The comparative study with the Eulerian finite Volume method provides an extensive understanding and application of the mesh-free Lagrangian vortex methods for numerical simulation of viscous flows around arbitrary bodies of general shape.

Free Surface Vortex in a Rotating Barrel with Rods of Different Heights

  • Zhang, Xiaoyue;Zhang, Min;Chen, Wanyu;Yang, Fan;Guo, Xueyan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.325-331
    • /
    • 2016
  • A bathtub vortex above the outlet of a rotating barrel is simulated. By analyzing the Ekman layer theory, it can be found that the main flow circulation is inversely proportional to the thickness of Ekman layer. The thicker the Ekman boundary layer, the weaker the rotational strength and the shorter of the length of gas core is. According to this law, models of barriers with rods of different heights are established. The reduction of air-core length in this air entrainment vortex and weakening the strength of rotation field were achieved.

Solution of the Liner Free Surface Problem by a Discrete Singularity Method (집중특이점분포법을 이용한 선형자유표면문제의 해석)

  • Gang, Chang-Gu;Yang, Seung-Il;Lee, Chang-Seop
    • 한국기계연구소 소보
    • /
    • v.4 no.1
    • /
    • pp.29-42
    • /
    • 1981
  • In this paper, it is demonstrated that, with the distribution of lowestorder concentrated (discrete) singularities of delta function nature, the solution to the linear free surface problem can be obtaianed with a remarkable degree of accuracy. The linearized bounday valve problem is formulated subject to boundary conditions for the determination of strengths of singularities; the simple sources above (not on) the free surface and the vortices on the body surface. Three sample calculations were performed; the flow about a submerged vortex of known strength, the flow past a submerged circular cylinder, and the flow around a hydrofoil section. The convergence of the numerical procedure is achieved with a relatively small number of elements, The final results are compared with those of the publi¬shed works, and are considered very satisfactory.

  • PDF

Solution of the Linear Free Surface Problem by a Discrete Singularity Method (집중특이점분포법(集中特異點分布法)을 이용(利用)한 선형자유표면문제(線型自由表面問題)의 해석(解析))

  • Chang-Gu,Kang;Seung-Il,Yang;Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 1981
  • In this paper, it is demonstrated that, with the distribution of lowest order concentrated(discrete) singularities of delta function nature, the solution to the linear free surface problem can be obtained with a remarkable degree of accuracy. The linear boundary value problem is formulated subject to boundary conditions for the determination of strengths of singularities; the simple sources above(not on) the free surface and the vortices on the body surface. Three sample calculation were performed` the flow about a submerged vortex of known strength, the flow past a submerged circular cylinder, and the flow around a hydrofoil section. The convergence of the numerical procedure is achieved with a relatively small number of elements. The final results are compared with those of the published works, and are considered very satisfactory.

  • PDF

Analysis of Flow around a Rotating Marine Propeller using PIV Techniques

  • Lee Sang Joon;Paik Bu Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.169-175
    • /
    • 2004
  • The characteristics of flow around a rotating propeller were investigated using PIV technique. For each of four different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$four hundred instantaneous velocity fields were ensemble averaged to investigate the spatial evolution of the flow around a propeller. The phase-averaged mean velocity fields show that the viscous wake formed by the boundary layers developed on the blade surfaces and the slipstream contraction in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. The boundary layer developed along the ship hull bottom surface of the ship stern provides a strong turbulent shear layer, affecting the vortex structure in the propeller near-wake. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. The turbulence intensity has large values around the tip and trailing vortices. As the wake moves downstream, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and adjacent wake flow.

  • PDF

Endplate effect on aerodynamic characteristics of three-dimensional wings in close free surface proximity

  • Jung, Jae Hwan;Kim, Mi Jeong;Yoon, Hyun Sik;Hung, Pham Anh;Chun, Ho Hwan;Park, Dong Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.477-487
    • /
    • 2012
  • We investigated the aerodynamic characteristics of a three-dimensional (3D) wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE) moved laterally to a greater extent than that of a wing-without-endplate (WOE). This causes a decrease in the induced drag, resulting in a reduction in the total drag.

EFFECTS OF THE FREE SURFACE ON THE FLOW PATTERN PAST A SQUARE CYLINDER (정방형 실린더 주위 유동패턴에 대한 자유수면의 영향)

  • Ahn, Hyungsu;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.81-87
    • /
    • 2017
  • The characteristics of flow past a square cylinder submerged under the free surface have been numerically studied. An immersed boundary method was adopted for implementation of the cylinder cross-section in a Cartesian grid system. Also, a level-set method was used to capture the interface of the two fluids. The case for Reynolds number 150 was examined. At the specific Reynolds number, by varying the gap ratio(0.25, 0.40, 0.55, 0.70, 1.00, 1.50, 2.50, 5.00) the effects of the free surface on the force coefficients and Strouhal number of vortex shedding were identified. The presence of the free surface very close to the cylinder significantly affects the shedding pattern, resulting in considerable deviation of the force coefficients and Strouhal number from those of the single-phase flow. In addition, the influence of Froude number was considered in this study. By increasing Froude number(0.2-0.4), flow topology change was identified at the specific gap ratios(0.40, 0.70, 1.50, 5.00).

The Numerical Study on the Flow Characteristics in Two-Dimensional Moonpool in Waves

  • Lee, Sang-Min;Im, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.443-450
    • /
    • 2014
  • The objective of this study is to examine the nonlinear fluid characteristics near and inside a moonpool in various sea conditions. We estimate the flow of the free surface in a moonpool taking into account the viscosity effect and the hydrodynamic forces that affects a moonpool and hull through CFD calculations. The comparison of horizontal forces per wave length shows that the hydrodynamic force is greater for the long wave length than short wave length, and the greatest hydrodynamic force acts on the moonpool when the wave length is equal to the ship's length. The horizontal force decreases as the wave amplitude decreases, and the hydrodynamic force acting on the moonpool in ${\lambda}=LBP$ is 10 times that in ${\lambda}=LBP/3$. The free surface demonstrates the piston mode, in which it oscillates up and down while remaining essentially flat, and the rise of the free surface level increases as the wave length increases. We can assume that the hydrodynamic force acting on the moonpool increases owing to the effect of a strong vortex for ${\lambda}=LBP$ and owing to the rise of the free surface level for ${\lambda}=LBP{\times}2$.

Adaptive Air-Particle Method for Vortex Effects of Water in Free Surface (자유표면내 물의 와류효과를 위한 적응적 공기 입자 기법)

  • Kim, Jong-Hyun;Lee, Jung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2017
  • We propose an efficient method to express water spray effects by adaptively modeling air particles in particle-based water simulation. In real world, water and air continuously interacts with each other around free surfaces and this phenomenon is commonly observed in waterfall or sea with rough waves. Due to thin spray water, the interfaces between water and air become vague and the interactions between them lead to heavy vortex phenomenon. To express this phenomenon, we propose methods of 1) generating adaptive air cell in particle-based water simulation, 2) expressing water spray effects by creating and evolving air particles in the adaptive air cells, and 3) guaranteeing robustness of simulation by solving drifting problem occurred when adjacent air particles are insufficient. Experiments convincingly demonstrate that the proposed approach is efficient and easy to use while delivering high-quality results.

Interaction of turbulences with non-breaking divergent waves in an open channel

  • Hwang, Ayoung;Seok, Woochan;Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-49
    • /
    • 2021
  • This paper presents a direct numerical simulation of turbulent flows over a bump in an open channel to examine the turbulence characteristics near divergent waves emanating from the bump and to investigate the interaction of the turbulences with the divergent waves. To verify the reliability of the simulations, the mean velocity profile and root-mean-square of velocity fluctuations are compared with previous data. The anisotropic invariant maps show that the ratio of the streamwise to spanwise velocity fluctuations plays an important role in characterizing the anisotropic nature of the separated shear layer behind the bump in the vicinity of the free surface. The vortex identification discloses a large-scale streamwise vortical structure from the mean velocity field and a cluster of small coherent structures from the instantaneous velocity field, which are responsible for the anisotropic characteristics of the turbulence beneath the free surface.