Analysis of Flow around a Rotating Marine Propeller using PIV Techniques

  • Lee Sang Joon (Mechanical Engineering, Pohang University of Science and Technology) ;
  • Paik Bu Geun (Mechanical Engineering, Pohang University of Science and Technology)
  • Published : 2004.12.01


The characteristics of flow around a rotating propeller were investigated using PIV technique. For each of four different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$four hundred instantaneous velocity fields were ensemble averaged to investigate the spatial evolution of the flow around a propeller. The phase-averaged mean velocity fields show that the viscous wake formed by the boundary layers developed on the blade surfaces and the slipstream contraction in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. The boundary layer developed along the ship hull bottom surface of the ship stern provides a strong turbulent shear layer, affecting the vortex structure in the propeller near-wake. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. The turbulence intensity has large values around the tip and trailing vortices. As the wake moves downstream, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and adjacent wake flow.