DOI QR코드

DOI QR Code

Interaction of turbulences with non-breaking divergent waves in an open channel

  • Hwang, Ayoung (Department of Naval Architecture and Offshore Engineering, Dong-A University) ;
  • Seok, Woochan (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Lee, Sang Bong (Department of Naval Architecture and Offshore Engineering, Dong-A University)
  • Received : 2020.09.16
  • Accepted : 2020.12.20
  • Published : 2021.11.30

Abstract

This paper presents a direct numerical simulation of turbulent flows over a bump in an open channel to examine the turbulence characteristics near divergent waves emanating from the bump and to investigate the interaction of the turbulences with the divergent waves. To verify the reliability of the simulations, the mean velocity profile and root-mean-square of velocity fluctuations are compared with previous data. The anisotropic invariant maps show that the ratio of the streamwise to spanwise velocity fluctuations plays an important role in characterizing the anisotropic nature of the separated shear layer behind the bump in the vicinity of the free surface. The vortex identification discloses a large-scale streamwise vortical structure from the mean velocity field and a cluster of small coherent structures from the instantaneous velocity field, which are responsible for the anisotropic characteristics of the turbulence beneath the free surface.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A2C1004682).

References

  1. Antonia, R.A., Kim, J., Browne, L.W.B., 1991. Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369-388. https://doi.org/10.1017/S0022112091000526
  2. Banerjee, S., Krahl, R., Durst, F., Zenger, C., 2007. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul. 8 (N32), 1-27.
  3. Chen, Y.J., Chau, S.W., Kouh, J.S., 2002. Application of two-phase fluid approach for free-surface ship flow simulation. J. Chin. Inst. Eng. 25, 179-188. https://doi.org/10.1080/02533839.2002.9670692
  4. Handler, R.A., Saylor, J.R., Leighton, R.I., Rovelstad, A.L., 1999. Transport of a passive scalar at a shear-free boundary in fully developed turbulent open channel flow. Phys. Fluids 11, 2607-2625. https://doi.org/10.1063/1.870123
  5. Kim, S.E., Cokljat, D., 2007. Evaluation of an URANS-LES hybrid approach for turbulent free surface flows around surface-piercing bodies. In: 9th International Conference on Numerical Ship Hydrodynamics.
  6. Kim, J., Sung, H.J., 2006. Wall pressure fluctuations and flow-induced noise in a turbulent boundary layer over a bump. J. Fluid Mech. 558, 79-102. https://doi.org/10.1017/S002211200600989X
  7. Kim, J., Moin, P., Moser, R., 1987. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133-166. https://doi.org/10.1017/S0022112087000892
  8. Komori, S., Nagaosa, R., Murakami, Y., 1993. Direct numerical simulation of three-dimensional open-channel flow with zero-shear gas-liquid interface. Phys. Fluids 5, 115-125. https://doi.org/10.1063/1.858797
  9. Koo, B., Yang, J., Yeon, S.M., Stern, F., 2014. Reynolds and Froude number effect on the flow past an interface-piercing circular cylinder. Int. J. Nav. Archit. Ocean. 6, 529-561. https://doi.org/10.2478/IJNAOE-2013-0197
  10. Le, H., Moin, P., Kim, J., 1997. Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349-374. https://doi.org/10.1017/S0022112096003941
  11. Lee, J., Suh, J., Sung, H.J., Pettersen, B., 2012. Structures of turbulent open-channel flow in the presence of an air-water interface. J. Turbul. 13 (N18), 1-18.
  12. Lumley, J.L., Newman, G.R., 1977. The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82, 161-178. https://doi.org/10.1017/S0022112077000585
  13. Mansour, N.N., Kim, J., Moin, P., 1988. Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 15-44. https://doi.org/10.1017/S0022112088002885
  14. Marquillie, M., Laval, J.P., Dolganov, R., 2008. Direct numerical simulation of a separated channel flow with a smooth profile. J. Turbul. 9 (N1), 1-23.
  15. Mollicone, J.P., Battista, F., Gualtieri, P., Casciola, C.M., 2017. Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel. J. Fluid Mech. 823, 100-133. https://doi.org/10.1017/jfm.2017.255
  16. Na, Y., Moin, P., 1998. Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379-405. https://doi.org/10.1017/S0022112098009987
  17. Nagaosa, R., 1999. Direct numerical simulation of vortex structures and turbulent scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids 11, 1581-1595. https://doi.org/10.1063/1.870020
  18. Nagaosa, R., Handler, R.A., 2003. Statistical analysis of coherent vortices near a free surface in a fully developed turbulence. Phys. Fluids 15, 375-394. https://doi.org/10.1063/1.1533071
  19. Ozdemir, Y.H., Barlas, B., Yilmaz, T., Bayraktar, S., 2014. Numerical and experimental study of turbulent free surface flow for a fast ship model. Brodogranja 65 (1), 39-54.
  20. Park, D.W., Lee, S.B., 2018. The sensitivity of ship resistance to wall-adjacent grids and near-wall treatments. Int. J. Nav. Arch. Ocean. 10, 683-691. https://doi.org/10.1016/j.ijnaoe.2017.12.003
  21. Park, S., Park, S.W., Rhee, S.H., Lee, S.B., Choi, J.E., Kang, S.H., 2013. Investigation on the wall function implementation for the prediction of ship resistance. Int. J. Nav. Arch. Ocean. 5, 0-14.
  22. Rhee, S.H., 2009. Unsteady Reynolds averaged Navier-Stokes method for free-surface wave flows around surface-piercing cylindrical structures. J. Waterw. Port. C. 135 (4), 135-143. https://doi.org/10.1061/(ASCE)0733-950X(2009)135:4(135)
  23. Seo, J.H., 2016. Free Surface Effects on Turbulent Boundary Layer and Near-Wake Around a Surface-Piercing Body. Ph.D. thesis. Seoul National University.
  24. Seol, D.M., Seo, J.H., Rhee, S.H., 2013. Towed underwater PIV measurement for free-surface effects on turbulent wake of a surface-piercing body. Int. J. Nav. Arch. Ocean. 5, 404-413. https://doi.org/10.2478/IJNAOE-2013-0142
  25. Suh, J., Yang, J., Stern, F., 2011. The effect of air-water interface on the vortex shedding from a vertical circular cylinder. J. Fluid Struct. 27, 1-22. https://doi.org/10.1016/j.jfluidstructs.2010.09.001
  26. Ubbink, O., Issa, R.I., 1999. A method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys. 153, 26-50. https://doi.org/10.1006/jcph.1999.6276
  27. Xing, T., Kandasamy, M., Stern, F., 2007. Unsteady free-surface wave-induced separation: analysis of turbulent structures using detached eddy simulation and single-phase level set. J. Turbul. 8 (N44), 1-35.
  28. Zwart, P.J., Goldin, P.G., Penrose, J., Rhee, S.H., 2008. Simulation of unsteady free-surface flow around a ship hull using a fully coupled multi-phase flow method. J. Mar. Sci. Technol. 13, 346-355. https://doi.org/10.1007/s00773-008-0012-7