Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A2C1004682).
References
- Antonia, R.A., Kim, J., Browne, L.W.B., 1991. Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369-388. https://doi.org/10.1017/S0022112091000526
- Banerjee, S., Krahl, R., Durst, F., Zenger, C., 2007. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul. 8 (N32), 1-27.
- Chen, Y.J., Chau, S.W., Kouh, J.S., 2002. Application of two-phase fluid approach for free-surface ship flow simulation. J. Chin. Inst. Eng. 25, 179-188. https://doi.org/10.1080/02533839.2002.9670692
- Handler, R.A., Saylor, J.R., Leighton, R.I., Rovelstad, A.L., 1999. Transport of a passive scalar at a shear-free boundary in fully developed turbulent open channel flow. Phys. Fluids 11, 2607-2625. https://doi.org/10.1063/1.870123
- Kim, S.E., Cokljat, D., 2007. Evaluation of an URANS-LES hybrid approach for turbulent free surface flows around surface-piercing bodies. In: 9th International Conference on Numerical Ship Hydrodynamics.
- Kim, J., Sung, H.J., 2006. Wall pressure fluctuations and flow-induced noise in a turbulent boundary layer over a bump. J. Fluid Mech. 558, 79-102. https://doi.org/10.1017/S002211200600989X
- Kim, J., Moin, P., Moser, R., 1987. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133-166. https://doi.org/10.1017/S0022112087000892
- Komori, S., Nagaosa, R., Murakami, Y., 1993. Direct numerical simulation of three-dimensional open-channel flow with zero-shear gas-liquid interface. Phys. Fluids 5, 115-125. https://doi.org/10.1063/1.858797
- Koo, B., Yang, J., Yeon, S.M., Stern, F., 2014. Reynolds and Froude number effect on the flow past an interface-piercing circular cylinder. Int. J. Nav. Archit. Ocean. 6, 529-561. https://doi.org/10.2478/IJNAOE-2013-0197
- Le, H., Moin, P., Kim, J., 1997. Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349-374. https://doi.org/10.1017/S0022112096003941
- Lee, J., Suh, J., Sung, H.J., Pettersen, B., 2012. Structures of turbulent open-channel flow in the presence of an air-water interface. J. Turbul. 13 (N18), 1-18.
- Lumley, J.L., Newman, G.R., 1977. The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82, 161-178. https://doi.org/10.1017/S0022112077000585
- Mansour, N.N., Kim, J., Moin, P., 1988. Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 15-44. https://doi.org/10.1017/S0022112088002885
- Marquillie, M., Laval, J.P., Dolganov, R., 2008. Direct numerical simulation of a separated channel flow with a smooth profile. J. Turbul. 9 (N1), 1-23.
- Mollicone, J.P., Battista, F., Gualtieri, P., Casciola, C.M., 2017. Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel. J. Fluid Mech. 823, 100-133. https://doi.org/10.1017/jfm.2017.255
- Na, Y., Moin, P., 1998. Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379-405. https://doi.org/10.1017/S0022112098009987
- Nagaosa, R., 1999. Direct numerical simulation of vortex structures and turbulent scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids 11, 1581-1595. https://doi.org/10.1063/1.870020
- Nagaosa, R., Handler, R.A., 2003. Statistical analysis of coherent vortices near a free surface in a fully developed turbulence. Phys. Fluids 15, 375-394. https://doi.org/10.1063/1.1533071
- Ozdemir, Y.H., Barlas, B., Yilmaz, T., Bayraktar, S., 2014. Numerical and experimental study of turbulent free surface flow for a fast ship model. Brodogranja 65 (1), 39-54.
- Park, D.W., Lee, S.B., 2018. The sensitivity of ship resistance to wall-adjacent grids and near-wall treatments. Int. J. Nav. Arch. Ocean. 10, 683-691. https://doi.org/10.1016/j.ijnaoe.2017.12.003
- Park, S., Park, S.W., Rhee, S.H., Lee, S.B., Choi, J.E., Kang, S.H., 2013. Investigation on the wall function implementation for the prediction of ship resistance. Int. J. Nav. Arch. Ocean. 5, 0-14.
- Rhee, S.H., 2009. Unsteady Reynolds averaged Navier-Stokes method for free-surface wave flows around surface-piercing cylindrical structures. J. Waterw. Port. C. 135 (4), 135-143. https://doi.org/10.1061/(ASCE)0733-950X(2009)135:4(135)
- Seo, J.H., 2016. Free Surface Effects on Turbulent Boundary Layer and Near-Wake Around a Surface-Piercing Body. Ph.D. thesis. Seoul National University.
- Seol, D.M., Seo, J.H., Rhee, S.H., 2013. Towed underwater PIV measurement for free-surface effects on turbulent wake of a surface-piercing body. Int. J. Nav. Arch. Ocean. 5, 404-413. https://doi.org/10.2478/IJNAOE-2013-0142
- Suh, J., Yang, J., Stern, F., 2011. The effect of air-water interface on the vortex shedding from a vertical circular cylinder. J. Fluid Struct. 27, 1-22. https://doi.org/10.1016/j.jfluidstructs.2010.09.001
- Ubbink, O., Issa, R.I., 1999. A method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys. 153, 26-50. https://doi.org/10.1006/jcph.1999.6276
- Xing, T., Kandasamy, M., Stern, F., 2007. Unsteady free-surface wave-induced separation: analysis of turbulent structures using detached eddy simulation and single-phase level set. J. Turbul. 8 (N44), 1-35.
- Zwart, P.J., Goldin, P.G., Penrose, J., Rhee, S.H., 2008. Simulation of unsteady free-surface flow around a ship hull using a fully coupled multi-phase flow method. J. Mar. Sci. Technol. 13, 346-355. https://doi.org/10.1007/s00773-008-0012-7