• Title/Summary/Keyword: Free moment

Search Result 295, Processing Time 0.035 seconds

Roll Damping Moment of a Small Fishing Vessel by Free Rolling Test in Calm Water (평수중 자유 횡동요 시험에 의한 소형어선의 횡동요 감쇠모멘트에 관한 연구)

  • H.H. Chun;S.H. Chun;S.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • The roll damping characteristics of the three models of a 3 ton class fishing vessel such as the bare hull, hull with bilge keels, and hull with bilge keels and a central wing are investigated by the free roll tests in calm water in a towing tank with the variations of the forward speed, initial angle and OG. The experimental results are compared with the numerical results of mathematical modellings by the energy method for these three models and the energy dissipation patterns are also compared.

  • PDF

Free Vibration Analysis of the Composite Cylindrical shells Combined with Interior Partitioned Plate (내부에 판이 결합된 복합재료 원통셀의 자유진동해석)

  • 이영신;최명환;박병준;김현수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.327-333
    • /
    • 1998
  • A method for analysis of the free vibrations of the composite cylindrical shell with a longitudinal, interior rectangular plate is developed by using the receptance method. This method is based on the ratio of a deflection(or slope) response to a harmonic force(or moment) at an joint point. The natural frequencies of the combined shells calculated numerically. The results are compared with the experiment and a finite, element analysis results in order to validate the formulation. The effects of the location and thickness of the plate on the frequencies are also investigated.

  • PDF

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.

A Study on the Vibration Characteristics of Steel and Plain Weave Composite Cylindrical Shells Combined with Internal Plate Structures (내부판 구조물이 결합된 강 및 평직 복합재료 원통셸의 구조진동 특성 연구)

  • 이영신;최명환
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.149-162
    • /
    • 1999
  • A method for the analysis of free vibrations of steel and plain weave composite cylindrical shells with a longitudinal, interior rectangular plate is developed by using the receptance method. This method is based on the ratio of a deflection (or slope) response to a harmonic force(or moment) at the joint. In this study, after getting the free vibration characteristics of the simply supported plate and shell, the frequency equation of the combined system is obtained by considering the continuity condition at the joint between the plate and the shell. The numerical results are compared with published results and experiment results in order to show the validate of the formulation, and shown that the analytical results agreed with those from other methods. The effects of the location and the thickness of the plate on the natural frequencies are also investigated.

  • PDF

Vibration Characteristics of Embedded Piles Carrying a Tip Mass (상단 집중질량을 갖는 근입 말뚝의 진동 특성)

  • Choi, Dong-Chan;Byun, Yo-Seph;Oh, Sang-Jin;Chun, Byung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.405-413
    • /
    • 2010
  • The vibration characteristics of fully and partially embedded piles with flexibly supported end carrying an eccentric tip mass are investigated. The pile model is based on the Bernoulli-Euler theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and corresponding mode shapes are calculated over a wide range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness, the embedded ratio, the mass ratio, the dimensionless mass moment of inertia, and the tip mass eccentricity.

Free Vibrations of Columns Immersed in Fluid (유체에 담긴 기둥의 자유진동)

  • 오상진;이병구;모정만
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.225-230
    • /
    • 1999
  • The purpose of this paper is to investigate the natural frequencies and mode shape of columns immersed in fluid. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertial and shear deformation. The eccentricity and rotatory inerital of the tip mass are taken into account . The governing differential equations forr the free vibrations of immersed columns are solved numerically using the corresponding boundary conditoins. The lowest four natural frequencies and corresponding mode shapes are calculated over a range of non-dimensional system parameters : the ratio of fluid depth to span length, the mass ratio, the dimensionless mass moment of inertial, and the eccentricity.

  • PDF

Stability Analysis of Beck's Column (Beck 기둥의 안정성 해석)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kang, Hee-Jong;Kim, Gwon-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.903-906
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the uniform Beck's columns with a tip spring, carrying a tip mass. The ordinary differential equation governing free vibrations of such Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the mass moment of inertia and spring parameter.

  • PDF

Effect of a vertical guide plate on the wind loading of an inclined flat plate

  • Chung, Kung-Ming;Chou, Chin-Cheng;Chang, Keh-Chin;Chen, Yi-Jun
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.537-552
    • /
    • 2013
  • Wind tunnel experiments were performed to study the wind loads on an inclined flat plate with and without a guide plate. Highly turbulent flow, which corresponded to free-stream turbulence intensity on the flat roof of low-rise buildings, was produced by a turbulence generation grid at the inlet of the test section. The test model could represent a typical solar collector panel of a solar water heater. There are up-stream movements of the separation bubble and side-edge vortices, more intense fluctuating pressure and a higher bending moment in the turbulent flow. A guide plate would result in higher lift coefficient, particularly with an increased projected area ratio of a guide plate to an inclined flat plate. The value of lift coefficient is considerably lower with increased free-stream turbulent intensity.

Experimental Study on the Analysis and Estimation of Metacentric Height in Response to Roll Period and Moment of Inertia Variations in Ships (선박의 횡요주기와 관성모멘트 변화에 따른 GM 추정 및 분석을 위한 실험 연구)

  • LeeChan Choi;JungHwi Kim;DongHyup Youn
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.380-388
    • /
    • 2023
  • This study estimates the metacentric height (GM) of a model ship by varying the transverse weight distribution, considering the effects of the roll period and moment of inertia, and compares it with the GM values measured by the inclining test. In the process, the relationship between the values is analyzed. Three types of ships-a 7-ton fishing vessel, 20-ton fishing vessel, and KRISO Very Large Crude-oil Carrier (KVLCC)-were used for the experiment and comparison. The roll period and moment of inertia were measured using the free roll decay and swing frame tests, and the GM was measured using inclining test. The estimated GM from the roll period and moment of inertia showed the same trend as the GM measured using the inclining test in the change of the weight distribution. However, the GM values measured using the inclining test were lower. Therefore, additional correction factors or parameters other than the roll period and moment of inertia are necessary for estimating GM. In the future, the relationship between the weight center and the estimated GM will be analyzed to derive the correction factors.