• Title/Summary/Keyword: Free electron density

Search Result 131, Processing Time 0.02 seconds

Electrical Properties of Plasma According to Gas Pressure and RF Power of Xe-Inductively Coupled Plasma (유도결합형 제논의 가스압력 및 RF전력에 따른 플라즈마의 전기적 특성)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.43-47
    • /
    • 2006
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma (ICP). As results at several dependences of 20~100mTorr Xenon pressure, the brightness of discharge tube was higher (4,900 $cd/m^2$) than other conditions when Xe pressure was 20mTorr and RF power was 200W. In that case, the electron temperature and density were 3.58eV and $3.56{\times}10^{12}cm^2$, respectively. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF

The Electron Temperature and Density Properties of Mixed Gases in ICP Lighting System : (Ne:Xe, Ne:Ar) (ICP 광원 시스템의 Ne:Xe 및 Ne:Ar 혼합가스의 전자온도 및 전자밀도 특성)

  • Lee, Jong-Chan;Choi, Yong-Sung;Park, Dae-Hee;Choi, Gi-Seung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.156-160
    • /
    • 2006
  • In whole world consciousness of environment maintenance have increased very quickly for the end of the 20th century. To use and disuse toxic substances have been controled at the field of industry. Also the field of lighting source belong to environmental control. And in the future the control will be strong. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem and root. In the mercury free lighting source system the Xe gas lamp is one type. And the Ne:Xe and Ne:Ar mixed gas lamp improve firing voltage of Xe gas lamp. Purpose of this study is to understand ideal mixing-ratio of Ne:Xe and Ne:Ar gas by electron temperature and electron density for mercury free lamp. Before ICP was designed, basic parameters of plasma, which are electron temperature and electron density, were measured and calculated by single-Langmuir probe. Property of electron temperature and electron density were confirmed by changing ratio of Ne:Xe and Ne:Ar.

Lipid and Lipase Distribution on Endosperm Cell of Panax ginseng Seed for the Electron Microscope (전자현미경을 이용한 인삼종자 배유세포내의 지질 및 지질가수분해 효소의 분포)

  • 유성철;노미전
    • Journal of Ginseng Research
    • /
    • v.16 no.2
    • /
    • pp.129-137
    • /
    • 1992
  • This study was carried out to investigate the localization of lipids and lipase activity with lipid staining and cytochemical technique in endosperm cells of Panax ginseng C.A. Meyer seed. In endosperm cells of indehiscent seed, protein bodies facing the umbiliform layer are different in electron density during the various degraded processes. Gradually, protein matrix near the cell wall was lysed and electron lucent inclusions appeared on umbiliform layer. The protein body with high electron density and the spherosome with low electron density were observed in endosperm cells. As a result of lipid staining, electron density of spherosome is more intense than those of the protein matrix within the protein body in endosperm cells of indehiscent seed. Free spherical spherosomes within the umbiliform layer have a high electron density. The spherical spherosomes were more electron densed and were uniform in comparison with the cytoplasmic proteinaceous granules in endosperm cells of seed with red seed coat. The major component of spherosome was determined to be lipid. Lipase activity occurs in the spherosome and near the endosperm cell wall facing the umbiliform layer. Cytochemical reaction products of lipase were observed in the spherosome membrane and in the inner regions of spherosome. After protein bodies were digested, lipase activities were observed in free spherosomes and near the cell wall of endosperm cells. Umbiliform layer composing of fibrillized wall and digested materials of the endosperm cell showed a little lipase reaction products.

  • PDF

Properties of Electron Temperature and Electron Density in Inductively Coupled Xenon Plasma (유도결합형 제논 플라즈마의 전자온도, 전자밀도 특성)

  • Her, In-Sung;Choi, Gi-Seung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2418-2420
    • /
    • 2005
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma(ICP). In results at several dependences of $20{\sim}100mTorr$ Xenon pressure, $50{\sim}200W$ RF power and horizontal distribution were especially mentioned. When Xe pressure was 20mTorr and RF power was 200W, the electron temperature and density were respectively 3.58eV and $3.56{\times}10^{12}cm^{-3}$. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF

Plasma Diagnosis of Ne:Xe, Ne:Ar Mixed Gases by Single Langmuir Probe in Inductively Coupled Plasma Light Source System (ICP 광원 시스템의 Ne:Xe, Ne:Ar 혼합가스의 단일탐침법을 이용한 플라즈마 진단)

  • Choi, Yong-Sung;Lee, Woo-Ki;Moon, Jong-Dae;Lee, Kyung-Sup;Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.91-95
    • /
    • 2006
  • In whole world consciousness of environment maintenance have increased very quickly for the end of the 20th century. To use and disuse toxic substances have been controled at the field of industry. Also the field of lighting source belong to environmental control. And in the future the control will be strong. In radiational mechanism of fluorescence lamp mechanism is the worst environmental problem. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem root. In the mercury free lighting source system the Xe gas lamp is one type. And the Ne:Xe mixing gas lamp improvements firing voltage of Xe gas lamp. Purpose and subject of this study are understand, efficiency, ideal of Ne:Xe plasma which mercury free lamp. Before ICP was designed, basic parameters of plasma, which are electron temperature and electron density, were measured and calculated by Langmuir probe data. Property of electron temperature and electron density were confirmed by changing ratio of Ne:Xe.

  • PDF

Properties of Electron Temperature and Density in Inductively Coupled Plasma of Xenon (유도결합형 제논 플라즈마의 전자온도, 밀도 특성)

  • Her, In-Sung;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.41-45
    • /
    • 2005
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma(ICP). In results at several dependences of 20~100 mTorr Xenon pressure, 50~200W RF power and horizontal distribution were especially mentioned. When Xe pressure was 20mTorr and RF power was 200W, the electron temperature and density were respectively 3.58eV and $3.56{\times}10^{12}cm^{-3}$. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF

The Electron temperature and Density properties of Mixing gas in ICP Lighting system(Ne:Xe, Ne:Ar) (ICP 광원 시스템의 Ne:Xe Ne:Ar 혼합가스의 전자온도 및 전자밀도의 특성 연구)

  • Choi, Gi-Seung;Lee, Jonh-Chan;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2424-2426
    • /
    • 2005
  • In whole world consciousness of environment maintenance have increased very quickly for he end of the 20th century. To use and disuse toxic substances have been controled at the field of industry. Also the field of lighting source belong to environmental control. And in the future the control will be strong. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem root. In the mercury free lighting source system the Xe gas lamp is one type. And the Ne:Xe and Ne:Ar mixing gas lamp improvements firing voltage of Xe gas lamp. Purpose and subject of this study are understand, efficiency, ideal of Ne:Xe and Ne:Ar plasma which mercury free lamp. Before ICP was designed, basic parameters of plasma, which are electron temperature and electron density, were measured and calculated by langmuir probe data. Property of electron temperature and electron density were confirmed by changing ratio of Ne:Xe and Ne:Ar.

  • PDF

Improvement of Corona Temperature and Velocity Determination Method Using a Coronagraph Filter System

  • Cho, Kyuhyoun;Chae, Jongchul;Lim, Eun-Kyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.85.3-86
    • /
    • 2017
  • We have developed a methodology to determine the coronal electron temperature and solar wind speed using a four filter coronagraph system. The method developed so far have been applied to total eclipse observation and have yielded plausible results. The current methodology starts from the assumption that 1) coronal free electrons are isothermal and 2) coronal free electrons have spherically symmetric distrubution. However, the actual solar corona differs significantly from the two assumptions above. The coronal electron density is not spherically symmetric due to streamers, plumes, and coronal loops, and the electron temperature is also expected to increase rapidly with distance from the sun. We will discuss how to determine the temperature and wind speed of the corona in the case of corona with thermal structures and non-spherical symmetric electron density.

  • PDF

Electronic Temperature and Density of Mixed Gases in Inductively Coupled Plasma Lighting System (Ne:Xe) (Inductively Coupled Plasma 광원 시스템의 Ne:Xe 혼합가스의 전자온도 및 전자밀도 특성)

  • Choi, Yong-Sung;Gu, Hal-Bon;Lee, Jin;Lim, Jong-Yeol;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.91-95
    • /
    • 2006
  • In whole world consciousness of environment maintenance have increased very quickly for the end of the 20th century. To use and disuse toxic substances have been controled at the field of industry. Also the field of lighting source belong to environmental control. And in the future the control will be strong. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem root. In the mercury free lighting source system the Xe gas lamp is one type. And the Ne:Xe mixing gas lamp improvements firing voltage of Xe gas lamp. Purpose and subject of this study are understand, efficiency, ideal of Ne:Xe plasma which mercury free lamp. Before ICP was designed, basic parameters of plasma, which are electron temperature and electron density, were measured and calculated by langmuir probe data. Property of electron temperature and electron density were confirmed by changing ratio of Ne:Xe.

  • PDF

Numerical Calculation Study on the Generalized Electron Emission Phenomenon

  • Kim, Hee-Tae;Yu, Soon-Jae
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.158-163
    • /
    • 2009
  • There are two kinds of well-known electron emissions from metal: field and thermionic emission. For thermionic emission, electrons come out of a metal due to the thermal energy, whereas for field emission, electrons tunnel out of a metal through the strong electric field. In this study, the most general electron emission caused by the temperature and electric field with a free electron gas model was considered. The total current density of electron emission comes from the field emission effect, where the electron energy is lower than vacuum, and from the thermionic-emission effect, where the electron energy is higher than vacuum. The total current density of electron emission is shown as a function of the temperature for a constant electric field, and as a function of the electric field for a constant temperature.