• Title/Summary/Keyword: Free Oxygen Radicals

Search Result 333, Processing Time 0.024 seconds

Protective Effect of Pueraria Radix Extract on the Cisplatin-induced Cytotoxicity of HEI-OC1 Cells Via Scavenging of Free Radicals (갈근 추출물이 Cisplatin으로 손상된 HEI-OC1 청각세포보호와 유리라디칼 소거능에 미치는 영향)

  • Yu, Hyeon-Hee;Seo, Se-Jeong;Moon, Hae-Dalma;Park, Rae-Kil;So, Hong-Seob;Jeon, Byung-Hun;Jung, Su-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.462-467
    • /
    • 2007
  • The radix of Pueraria thunbergiana BENTHAM (Leguminosae) is traditionally prescribed to attenuate the clinical manifestations of inner ear dysfunction and various clinical situations including fever, gastrointestinal disorders, skin problems, migraine headaches, lowering cholesterol and treating chronic alcoholism in Oriental Medicine. In the present study, we examined the effect of ethanol extract of P. thunbergiana radix (EPR) on cisplatin-mediated HEI-OC1 auditory cell death. In addition, to investingate the protection mechanism of EPR on free radicals. Treatment of EPR protected cells from cisplatin and reduced lipid peroxidation in a dose-dependent manner. Furthermore, EPR demonstrated significant scavenging activity against various free radicals, including superoxide radical, hydroxyl radical, hydrogen peroxide, and DPPH radical. These results indicate that EPR protects cisplatin-induced damages of HEI-OC1 cells through inhibition of lipid peroxidation and augmenting scavenging activities against free radials.

Effects of Melatonin on the Meiotic Maturation of Mouse Oocytes in vitro (생쥐 난자의 체외 성숙에 미치는 Melatonin의 영향)

  • Ahn, Hee-Jin;Bae, In-Ha
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.3
    • /
    • pp.155-168
    • /
    • 2004
  • Objective: Melatonin, which is secreted by pineal gland play an important role in the regulation of ovarian function via seasonal rhythm and sleep in most mammals. It also has a role in the protection of cells by removing toxic oxygen free radicals brought about by metabolism. In the present study, effects of melatonin on the mouse oocyte maturation were examined using two different culture conditions provided with 5% or 21% oxygen concentration. Material and Method: Immature mouse oocytes were obtained from the ovarian follicles of $3{\sim}4$ weeks old ICR strain mice intraperitoneally injected with 5 I.U. PMSG 44 hour before. Under stereomicroscope, morphologically healthy oocytes with distinct germinal vesicle (GV) were liberated from the graafian follicles and collected using mouth-controlled micropipette. They were then cultured for 17 hour at $37^{circ}C$, 5% $CO_2$ and 21% $O_2$ (95% air) or 5% $CO_2$, 5% $O_2$ and 90% $N_2$. New modified Hank's balanced salt solution (New MHBS) was used as a culture medium throughout the experiments. Effects of melatonin were examined at a concentration of $0.0001{\mu}M$, $0.01{\mu}M$ or $1.0{\mu}M$. For the prevention of spontaneous maturation of immature oocytes during culture, dibutyryl cyclic AMP (dbcAMP) and/or hypoxanthine were included in the medium. Results: Under 21% oxygen condition, oocytes cultured in the presence of $0.01{\mu}M$ melatonin showed a significantly higher maturation rates, in terms of germinal vesicle breakdown (95.0% vs 89.0%) and polar body formation (88.1% vs 75.4%), compared to those cultured with $0.0001{\mu}M$ or $1.0{\mu}M$ melatonin. However, no difference was observed in oocytes cultured under 5% oxygen whether they were treated with melatonin or not. In the presence of $0.01{\mu}M$ melatonin, oocytes either cultured under 21% or 5% oxygen exhibited no difference in the polar body formation (85.6% vs 86.7%). However, in the absence of melatonin, oocytes cultured under 21% oxygen exhibited lower polar body formation (74.7%). When oocytes were cultured in the presence of dbcAMP alone or with varying concentrations of melatonin, those treated with both compounds always showed better maturation, i.e., germinal vesicle breakdown and polar body formation, compared to those cultured with dbcAMP alone. At the same concentration of melatonin, however, oocytes exposed to 21% oxygen showed poor maturation than those to 5% oxygen. Similar results were obtained from the experiments using hypoxanthine instead of dbcAMP. Conclusion: Based upon these results, it is suggested that melatonin could enhance the meiotic maturation of mouse oocytes under 21% oxygen concentration, and release oocytes from the meiotic arrest by dbcAMP or hypoxanthine regardless of the concentration of oxygen, probably via the removal of oxygen free radicals.

Effect of Taraxacum herba Extract on the Hepatic Xanthine Oxidase Activity in Rats (포공영 추출물이 흰쥐간 Xanthine Oxidase 활성에 미치는 영향)

  • 이상일;이영순;윤종국
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.5 no.3
    • /
    • pp.215-221
    • /
    • 1995
  • This study was undertaken to investigate the effect of Taraxacum herba extract on the hepatic xanthine oxidase activity as a oxygen free radical generating enzyme in vitro and in vivo. It was observed that partial purified hepatic xanthine oxidase (type O) activity was strongly inhibited by the addition of Taraxacum herba n-butanol extract in vitro. The Km value of xanthine oxidase without affecting the Vmax value for xanthine was significantly increased by the addition of ta-dase (type O) activity was significantly inhibited by the treatment of Taraxacum gerba n-butanol ex-tract for 5days(over 40mg/kg, i.p), whereas, xanthine oxidase (type D) activity was not changed by the injection of Taracacum herba n-butanol extract. Meanwhile, liver weight / body weight(%), serum alanine aminotransferase activity and hepatic lipid peroxide content in Taraxacum herba n-buta-nol extract-treated rat were not changed. These findings led us to conclude that Taraxacum herba n-butanol extract may regulate the hepatic xanthine oxidase type O activity to prevent toxic effect of oxidative stress by the oxygen free radicals.

  • PDF

The Isolation and Antioxidative Effects of Vitexin from Acer palmatum

  • Kim Jin Hwa;Lee Bum Chun;Kim Jin Hui;Sim Gwan Sub;Lee Dong Hwan;Lee Kyung Eun;Yun Yeo Pyo;Pyo Hyeong Bae
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.195-202
    • /
    • 2005
  • Free radicals and reactive oxygen species (ROS) caused by UV exposure or other environmental factors are critical players in cellular damage and aging. In order to develop a new antiphotoaging agent, this work focused on the antioxidant effects of the extract of tinged autumnal leaves of Acer palmatum. One compound was isolated from an ethyl acetate soluble fraction of the A. palmatum extract using silica gel column chromatography. The chemical structure was identified as apigenin-8-C-beta-D-glucopyranoside, more commonly known as vitexin, by spectral analysis including LC-MS, FT-IR, UV, $^{1}H-$, and $^{13}C-NMR$. The biological activities of vitexin were investigated for the potential application of its anti-aging effects in the cosmetic field. Vitexin inhibited superoxide radicals by about $70\%$ at a concentration of $100\;{\mu}g/mL$ and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals by about $60\%$ at a concentration of $100\;{\mu}g/mL$. Intracellular ROS scavenging activity was indicated by increases in dichlorofluorescein (DCF) fluorescence upon exposure to UVB $20\;mJ/cm^2$ in cultured human dermal fibroblasts (HDFs) after the treatment of vitexin. The results show that oxidation of 5-(6-)chloromethyl-2',7'-dichlo-rodihydrofluorescein diacetate ($CM-H_{2}DCFDA$) is inhibited by vitexin effectively and that vitexin has a potent free radical scavenging activity in UVB-irradiated HDFs. In ROS imaging using a confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our findings suggest that vitexin can be effectively used for the prevention of UV-induced adverse skin reactions such as free radical production and skin cell damage.

An Experimental Study on the Efficacy of Vitamin E aganinst Oxygen Toxicity (산소중독에 대한 Vitamin E의 보호효과에 관한 실험적 연구)

  • Lee, Sung-Gyu;Lee, Sang-Il;Cho, Soo-Hun;Yun, Dork-Ro
    • Journal of Preventive Medicine and Public Health
    • /
    • v.19 no.2 s.20
    • /
    • pp.184-192
    • /
    • 1986
  • Since the wide spread application of hyperbaric oxygenation in clinical setting, the problems of oxygen toxicity have been attracting a deep interest from the researchers on hyperbaric medicine as a practical issue. Among extensive research trials, the study on the protective agents against oxygen toxicity occupied one of the most challenging field. As the mechanisms of oxygen toxicity, the role of the oxygen free radicals produced by peroxidation process are strongly accepted by the leading researchers on oxygen toxicity, the probable protective effects of antioxidant against oxygen toxicity are sustaining a sufficient rationale. In this study, the author attempted to evaluate the effect of vitamin E as a protective agent against oxygen toxicity through the observation of death rate, convulsion rate, time to convulsion, and macroscopic and microscopic pathological changes of experimental rats exposed to 100% oxygen at 5 ATA for 120 minutes. The findings observed are as follows: 1) The death rate, convulsion rate, time to convulsion, organ/body weight ratio and microscopic pathological findings were identified as reliable objective and quantitative indices for oxygen toxicity. 2) Vitamin E showed excellent protective effects against CNS and pulmonary oxygen toxicity as a strong antioxidant. The most effective dose seemed to be around 400 mg/kg 3) The results of this study are supporting the oxygen free radical hypothesis on oxygen toxicity.

  • PDF

Cytotoxicity of Hydrogen Peroxide and Effects of Rhizoma Gastrodiae Against Hydrogen Peroxide in Mouse Cerebral Neurons (생쥐의 배양 대뇌신경세포에 대한 Hydrogen Peroxide의 세포독성 및 천마의 영향)

  • Choi Yu Sun;Lee Eun Mi;Son Young Woo;Lee Kang Chang;Shin Yong Il;Song Myung Su;Choi Young Ja;Choi Kyu Chul;Kang Hyung Won;Lim Chang Yong;Rhu Ti Yong;Park Sea Hong;Park Seung Taeck
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.928-931
    • /
    • 2002
  • To elucidate the toxic effect of oxygen free radicals on cultured mouse cerebral neurons damaged by hydrogen peroxide(H₂O₂)-induced neurotoxicity, we examined the neurotoxicity induced by oxygen radicals by NR assay when cultured cerebral neurons were grown in the media containing various concentrations of H202 for 6 hours. In addition, neuroprotective effects of herb extracts such Rhizoma Gastrodiae(RG) on H202-induced neurotoxicity in cultured cerebral neurons were evaluated after cultured cerebral neurons were preincubated with various concentrations of herb extract, RG for 2 hours before 50uM H₂O₂ for 6 hours. H₂O₂ decreased remarkably cell viability in dose-and time-dependent manner in these cultures, and also herb exract, RG decreased LDH activity of cerebral neurons damaged by H₂O₂. From the above results, it is suggested that H₂O₂ was toxic in cultured cerebral neurons from mouse, and RG was effective in blocking the neurotoxicity induced by oxygen radicals in these cultures.

Comparison of the Antioxidant Effects of Diallyl Sulfide, Capsaicin, Gingerol and Sulforaphane in $H_2O_2$-Stressed HepG2 Cells (산화스트레스가 유도된 인체 간암세포 (HepG2)에서 Sulforaphane과 Diallyl Sulfide, Capsaicin, Gingerol의 항산화효과 비교연구)

  • Lee, So-Youn;Wi, Hae-Ri;Lee, Myoung-Sook
    • Journal of Nutrition and Health
    • /
    • v.44 no.6
    • /
    • pp.488-497
    • /
    • 2011
  • Oxygen is necessary to sustain life, yet cellular oxygen metabolism creates destructive elements called free radicals. Free radicals are chemically unbalanced and carrying free electrons that can damage molecules, potentially damaging the cell itself. For this reason, many antioxidant products, including supplements and functional foods, are being developed. In particular, natural products are rich sources of pharmacologically active compounds. The purpose of this study was to investigate the antioxidant effects of target biomaterials in Korean traditional spices such as diallyl sulfide (DAS), capsaicin (CAP), and gingerol (GGR), and to investigate the response of the antioxidant defense system to oxidative stress by hydrogen peroxide ($H_2O_2$) compared to sulforaphane (SFN) in HepG2 cells. After the analysis of the cell viability using Cell Counting kit-8 (CCK-8) assay, we determined that the optimum levels were $200{\mu}M$ DAS, $25{\mu}M$ CAP, $50{\mu}M$ GGR, and $12.5{\mu}M$ SFN. Antioxidant enzymes were measured and protein expression was detected by Western blotting. All treatments showed a significant decrease in antioxidant enzyme activity such as superoxide dismutase, catalse, and glutathione peroxidase in HepG2 cells. Additionally, DAS, CAP, GGR and SFN increased the antioxidant system-related transcription factor Nrf2 which was found to be regulated by the activation of MAPK-JNK in this study. In conclusion, these results indicate the protective effects of DAS CAP, GGR, and SFN against $H_2O_2$-induced oxidative stress.

A STUDY ON POTENTIAL PROTECTIVE ACTIVITIES OF GLUTATHIONE AND CHLORPROMAZINE AGAINST OXYGEN TOXICITY (산소중독에 대한 Glutathione과 Chlorpromazine의 보호효과에 관한 실험적 연구)

  • Lim, Hyun-Sul;Yun, Dork-Ro
    • Toxicological Research
    • /
    • v.6 no.2
    • /
    • pp.143-157
    • /
    • 1990
  • Effective measure to prevent oxygen toxicity is greatly required as there increase chances to be exposed to high oxygen pressure, for example, space travel, deep sea diving and hyperbaric oxygen therapy. In the present study, in an attempt to evaluate glutathione and chlorpromazine as protective agents against oxygen toxicity, effects of the agents were tested on various toxicities (death rate, convulsion rate, time to convulsion, increase in weight of lung and brain and pathological changes in the organs) observed in rats exposed to 5 Absolute Atmosphere (ATA) of 100% oxygen for 120 minute. Glutathione reduced mortality rate and convulsion rate and also markedly suppressed the increase in lung and brain weight. The pathological changes observed in these organs were ameliorated by administration of glutathione. Chlorpromazine also reduced mortality rate but its effects appeared to be limited mainly to pulmonary toxicities. Thus glutathione seems to be more effective than chlorpromazine as a protective agent. The results obtained may support that oxygen toxicity is mediated by oxygen free radicals.

  • PDF

Purification and Characterization of an Antioxidant Protein from Fertilized Eggs

  • Yang, Shaohua;Tang, Zhengjiang;Tang, ShanShan;Zhang, Tingfang;Tang, Fei;Wu, Yu;Wang, Ying;Wang, Lu Lu;Liu, Guoqing
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.791-798
    • /
    • 2016
  • Free radicals may attack cells or tissue, leading to chronic diseases, and antioxidant consumption is potentially useful for removing free radicals. Egg proteins may be used as potential sources of antioxidant considering their ability of scavenging free radicals to apply for food or cosmetics industry. In this study, we obtained a natural antioxidant protein from fertilized eggs, which was a dietary supplement in some Asian countries. Meanwhile, antioxidant activities of these proteins were evaluated using different oxidation systems. With increasing incubation time, the antioxidant activity of these proteins increased during 15 d of incubation. The samples on day 15 were performed for isolation of antioxidant protein. The protein, named P4-1 (MW, 45 kDa), was isolated and purified by consecutive chromatographic methods. P4-1 contained 17 amino acids, which was determined by liquid chromatography-mass spectrometry and Amino Acid Analyzer. Moreover, the amino acid sequence was highly similar to that of ovalbumin. Differential scanning calorimetry showed that the denaturation temperature of P4-1 was $57.16^{\circ}C$. Furthermore, P4-1 suggested high oxygen radical-absorbance activity in ${\cdot}OH$ assays, and its antioxidant activity was stable at $30-50^{\circ}C$ in acidic and neutral pH. Thus, these results revealed that P4-1 may be a potential resource as a natural antioxidant.

Effects of Biphenyldimethyl dicarboxylate(DDB) on the Lipid Peroxidation, Oxygen Free Radical Scavenging Enzymes Activities and Hepatic Functions in Ethanol-induced Hepatotoxic Rats (Biphenyldimethyl dicarboxylate(DDB)가 Ethanol 유발 간독성 흰쥐에서의 지질 과산화와 Oxygen Free Radical 제거 효소 활성도 및 간기능에 미치는 영향)

  • Song, Ho-Yeon;Ha, Kyung-Ran;Koh, Hyun-Chul;Shin, In-Chul;Suh, Tae-Kyu
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.2
    • /
    • pp.217-225
    • /
    • 1994
  • In an attempt to define the effects of Biphenyldimethyl dicarboxylate(DDB) on the lipid peroxidation, oxygen free radical scavenging enzymes activities and hepatic functions in ethanol-induced hepatotoxic rats, we studies malondialdehyde(MDA) level and the activities of catalse, superoxide dismutase(SOD), glutamic-oxaloacetic transaminase(GOT) and glutamic-pyruvic transaminase(GPT) in liver of the rats at 24, 48 and 72 hr after the injection of ethanol and DDB. Sprague-Dalwey albino rats weighing 250 to 280gm were injected intraperitoneally with ethanol(2.5 gm/kg ) only and ethanol plus DDB(300mg/kg ). The result obtained can be summarized as follows : 1) The group treated with ethanol showed significantly higher MDA level and lower catalase and SOD activities at 24, 48 and 72hr after the injection as compared with that of control group. 2) The group treated with ethanol showed significantly higher GOT and GPT activities at 24, 48 and 72hr after the injection as compared with that of control group. 3) The group treated with ethanol plus DDB showed significantly lower MDA level and higher catalase and SOD activities at 24, 48 and 72 hr after the injection as compared with that of ethanol group. 4) The group treated with ethanol plus DDB showed significantly lower GOT and GPT activities at 24, 48 and 72 hr after the injection as compared with that of ethanol group. These results suggest that the excessive oxygen free radicals resulting from the depression of the activities of catalase and superoxide dismutase is an important determinant in pathogenesis of ethanol-induced hepatotoxicity and DDB has antioxidant effects.

  • PDF