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Effectsof Meatonin on the Meiotic Maturation of Mouse Oocytesin vitro
Hee-Jin Ahn, In-Ha Bae

Department of Biology, Graduated School, Sungshin Women's University

Objective: Melatonin, which is secreted by pineal gland play an important role in the regulation of
ovarian function via seasonal rhythm and sleep in most mammals. It also has a role in the protection of
cells by removing toxic oxygen free radicals brought about by metabolism. In the present study, effects
of melatonin on the mouse oocyte maturation were examined using two different culture conditions
provided with 5% or 21% oxygen concentration.

Material and Method: Immature mouse oocytes were obtained from the ovarian follicles of 3~4
weeks old ICR strain mice intraperitoneally injected with 5 L.U. PMSG 44 hour before. Under
stereomicroscope, morphologically healthy oocytes with distinct germinal vesicle (GV) were liberated
from the graafian follicles and collected using mouth-controlled micropipette. They were then cultured
for 17 hour at 37 , 5% CO, and 21% O, (95% air) or 5% CO,, 5% O, and 90% N,. New modified
Hank's balanced salt solution (New MHBS) was used as a culture medium throughout the experiments.
Effects of melatonin were examined at a concentration of 0.0001 pM, 0.01 pM or 1.0 uM. For the
prevention of spontaneous maturation of immature oocytes during culture, dibutyryl cyclic AMP
(dbcAMP) and/or hypoxanthine were included in the medium.

Results: Under 21% oxygen condition, oocytes cultured in the presence of 0.01 pM melatonin
showed a significantly higher maturation rates, in terms of germinal vesicle breakdown (95.0% vs
89.0%) and polar body formation (88.1% vs 75.4%), compared to those cultured with 0.0001 uM or 1.0
UM melatonin. However, no difference was observed in oocytes cultured under 5% oxygen whether
they were treated with melatonin or not. In the presence of 0.01 pM melatonin, oocytes either cultured
under 21% or 5% oxygen exhibited no difference in the polar body formation (85.6% vs 86.7%).
However, in the absence of melatonin, oocytes cultured under 21% oxygen exhibited lower polar body
formation (74.7%). When oocytes were cultured in the presence of dbcAMP alone or with varying
concentrations of melatonin, those treated with both compounds always showed better maturation, i.e.,
germinal vesicle breakdown and polar body formation, compared to those cultured with dbcAMP alone.
At the same concentration of melatonin, however, oocytes exposed to 21% oxygen showed poor
maturation than those to 5% oxygen. Similar results were obtained from the experiments using
hypoxanthine instead of dbcAMP.
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Conclusion: Based upon these results, it is suggested that melatonin could enhance the meiotic
maturation of mouse oocytes under 21% oxygen concentration, and release oocytes from the meiotic
arrest by dbcAMP or hypoxanthine regardless of the concentration of oxygen, probably via the removal

of oxygen free radicals.
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Figure 1. Effects of melatonin on the meiotic maturation of mouse oocytes under 21% O, in vitro. The above results
were obtained by pooling of ten replicates. *p<0.05, **p<0.005
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Figure 2. Effects of melatonin on the meiotic maturation of mouse oocytes under 5% O, in vitro. The above results
were obtained by pooling of seven replicates.
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Figure 3. Effects of melatonin on the polar body formation of mouse oocytes cultured for 17 hours under 21% O, or
5% O, invitro. **p<0.005

|0% of GvaD W% of P8

100 ¢
e o
B0
G0

40

% of maturation

20

Bo.4 a4 928

21%0-+0 [131) 21900+ 0,010 (133) S0+ 0 (134)
Cong, of Oe and Melatanin, 8 (Mo, of Docyles)

Figure 4. Effects of melatonin on the meiotic maturation of mouse oocytes under 21% O, or 5% O, in vitro. **p<0.005
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Figure 5. Effects of melatonin on the germinal vesicle breakdown of mouse oocytes in the presence of dbcAMP
cultured for 4 hours under 21% O,. The above results were obtained by pooling of nine replicates. *p<0.05, **p<0.005
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Figure 6. Effects of melatonin on the polar body formation of mouse oocytes in the presence of dbcAMP cultured
for 17 hours under 21% O, in vitro. The above results were obtained by pooling of nine replicates. *p<0.05, **p<0.005
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Figure 7. Effects of melatonin on the germinal vesicle breakdown of mouse oocytes in the presence of dbcAMP
cultured for 4 hours under 5% O, in vitro. The above results were obtained by pooling of seven replicates.
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Figure 8. Effects of melatonin on the polar body formation of mouse oocytes in the presence of dbcAMP cultured
for 17 hours under 5% O, in vitro. The above results were obtained by pooling of seven replicates. *p<0.05, **p<0.005
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Figure 9. Effects of melatonin on the polar body formation of mouse oocytes in the presence of dbcAMP cultured
for 17 hours under 21% O, or 5% in vitro. *p<0.05, **p<0.005
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Figure 10. Effects of melatonin on the germinal vesicle breakdown of mouse oocytes in the presence of hypo-
xanthine cultured for 4 hours under 21% O, in vitro. The above results were obtained by pooling of eight replicates.
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Figure 11. Effects of melatonin on the polar body formation of mouse oocytes in the presence of hypoxanthine
cultured for 17 hours under 21% O, in vitro. The above results were obtained by pooling of eight replicates. *p<0.05
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Figure 12. Effects of melatonin on the germinal vesicle breakdown of mouse oocytes in the presence of hypo-
xanthine cultured for 4 hours under 5% O, in vitro. The above results were obtained by pooling of seven replicates.

-163 -



melato-

melatonin
. nin  hypoxanthine GV arrest
21% (Figure 10, 11).
hypoxanthine =~ GYBD
| 0.0001 5% O,
uM  0.01 pM  melatonin (Figure 12).
||:|.N:|5|:n|: of Hypaxanthine [l Present of Hypoxanthine
100
_ i 3 %
ao r
c
=
2 a8l
=
3
'E 40 F
#
20
BE2
i . N .

0128 0 (130) 00007 {128) 0.01 (132) 1121}
Conc. of Melatonin, 8 {Mo. of Docytes)

Figure 13. Effects of melatonin on the polar body formation of mouse oocytes in the presence of hypoxanthine
cultured for 17 hours under 5% O, in vitro. The above results were obtained by pooling of seven replicates. *p<0.05,

*#%p<0.005

[D21%0:  W5%0:|

100 ¢
W EE

BO

&b

40 t

%% of maturation

20

65 61.8

] 0.0001 201 1
Conc. of Melatonin, p

Figure 14. Effects of melatonin on the polar body formation of mouse oocytes in the presence of hypoxanthine
cultured for 17 hours under 21% O, or 5% O, in vitro. *p<0.05, **p<0.005
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