Browse > Article

The Isolation and Antioxidative Effects of Vitexin from Acer palmatum  

Kim Jin Hwa (R&D Center, Hanbul Cosmetics Co. Ltd.)
Lee Bum Chun (R&D Center, Hanbul Cosmetics Co. Ltd.)
Kim Jin Hui (R&D Center, Hanbul Cosmetics Co. Ltd.)
Sim Gwan Sub (R&D Center, Hanbul Cosmetics Co. Ltd.)
Lee Dong Hwan (R&D Center, Hanbul Cosmetics Co. Ltd.)
Lee Kyung Eun (R&D Center, Hanbul Cosmetics Co. Ltd.)
Yun Yeo Pyo (College of Pharmacy, Chungbuk National University)
Pyo Hyeong Bae (R&D Center, Hanbul Cosmetics Co. Ltd. College of Pharmacy, Chungbuk National University)
Publication Information
Archives of Pharmacal Research / v.28, no.2, 2005 , pp. 195-202 More about this Journal
Abstract
Free radicals and reactive oxygen species (ROS) caused by UV exposure or other environmental factors are critical players in cellular damage and aging. In order to develop a new antiphotoaging agent, this work focused on the antioxidant effects of the extract of tinged autumnal leaves of Acer palmatum. One compound was isolated from an ethyl acetate soluble fraction of the A. palmatum extract using silica gel column chromatography. The chemical structure was identified as apigenin-8-C-beta-D-glucopyranoside, more commonly known as vitexin, by spectral analysis including LC-MS, FT-IR, UV, $^{1}H-$, and $^{13}C-NMR$. The biological activities of vitexin were investigated for the potential application of its anti-aging effects in the cosmetic field. Vitexin inhibited superoxide radicals by about $70\%$ at a concentration of $100\;{\mu}g/mL$ and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals by about $60\%$ at a concentration of $100\;{\mu}g/mL$. Intracellular ROS scavenging activity was indicated by increases in dichlorofluorescein (DCF) fluorescence upon exposure to UVB $20\;mJ/cm^2$ in cultured human dermal fibroblasts (HDFs) after the treatment of vitexin. The results show that oxidation of 5-(6-)chloromethyl-2',7'-dichlo-rodihydrofluorescein diacetate ($CM-H_{2}DCFDA$) is inhibited by vitexin effectively and that vitexin has a potent free radical scavenging activity in UVB-irradiated HDFs. In ROS imaging using a confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our findings suggest that vitexin can be effectively used for the prevention of UV-induced adverse skin reactions such as free radical production and skin cell damage.
Keywords
Acer palmatum; Vitexin; Antioxidant; Free radical; Photoprotection;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 24  (Related Records In Web of Science)
Times Cited By SCOPUS : 23
연도 인용수 순위
1 Bestwick, C. S. and Milne, L., Quercetin modifies reactive oxygen levels but exerts only partial protection against oxidative stress within HL-60 cells. Biochim. Biophys. Acta, 1528, 48-59 (2001)
2 Blois, M. S., Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 (1958)   DOI   ScienceOn
3 Bonina, F., Puglia, C., Ventura, D., Aquino, R., Tortora, S., Sacchi, A., Saija, A., Tomaino, A., Pellegrino, M. L., and de Capariis P., In vitro antioxidant and in vivo photoprotective effects of a lyophilized extract of Capparis spinosa L. buds. J. Cosmet. Sci., 53, 321-335 (2002)
4 Cathcart, R., Schwiers, E., and Ames, B. N., Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal. Biochem., 134, 111-116 (1983)   DOI   ScienceOn
5 Harborne, J. B., Nature, Distribution and function of plant flavonoids. Prog. Clin. Biol. Res., 213, 15-24 (1986)
6 Harman, D., Role of free radical reactions in aging and disease. J. Geriat. Dermatol., 5, 114-127 (1997)
7 Mathews-Roth, M. M., Carotenoid pigment administration and the delay in development of UVB-induced tumors. Photochem. Photobiol., 42, 35-38 (1983)   DOI   ScienceOn
8 Oh, I. S., Whang, W. K., and Kim, I. H., Constituents of Crataegus pinnatifida val. psilosa Leaves (II) Flavonoids from BuOH fraction. Arch. Pharm. Res., 17, 314-317 (1994)   DOI   ScienceOn
9 Prabhakar, M. C., Bano, H., Kumar, I., Shamsi, M. A., and Khan, M. S. Y., Pharmacological investigations on vitexin. Planta medica, 43, 396-403 (1981)   DOI   ScienceOn
10 Trayner, I. D., Rayner, A. P., Freeamn, G. E., and Farzaneh, F., Quantitative multiwell myeloid differentiation assay using dichlorodihydrofluorescein diacetate ($H_2DCFDA$) or dihydrorhodamine 123 ($H_2R123$). J. Immunol. Methods, 186, 275-284 (1995)   DOI   ScienceOn
11 Zhang, H., Joseph, J., Felix, C., and Kalyanaraman, B., Bicarbonate enhances the hydroxylation, nitration, and peroxidation reactions catalyzed by copper, zinc superoxide dismutase : intermediacy of carbomate anion radical. J. Biol. Chem., 275, 14038-14045 (2000)   DOI   ScienceOn
12 Gaitan, E., Cooksey, R. C., Legan, J., and Lindsay, R. H., Antithyroid effects in vivo and in vitro of vitexin : a Cglycosylflavone in millet. J. Clin. Endocrinol. Metab., 80, 1144-1147 (1995)   DOI   ScienceOn
13 Ryoo, Y. W., Suh, S. I., Mun, K. C., Kim, B. C., and Lee, K. S., The effects of the melatonin on ultraviolet-B irradiated cultured dermal fibroblasts. J. Dermatol. Sci., 27, 162-169 (2001)   DOI   ScienceOn
14 Young, A. J., Wellings R., and Britton G., The fate of chloroplast pigments during senescence of primary leaves of Hordeum vulgare and Avena sativum. J. Plant Physiol., 137, 701-705 (1991)   DOI
15 Bandoniene, D. and Murkovic, M., On-line HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from apples (Malus domestica L.). J. Agric. Food Chem., 50, 2482-2487 (2002)   DOI   ScienceOn
16 Furuno, K., Akasako, T., and Sugihara, N., The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids. Biol. Pharm. Bull., 25, 19-23 (2002)   DOI   ScienceOn
17 Afitlhile, M. M., Dent, R. M., and Cowan, A. K., Changes in carotenoid composition in senescing leaves of Hordeum vulgare L. cv. Dyan. J. Plant Physiol., 142, 4349 (1993)   DOI   ScienceOn
18 Middleton, E. Jr., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 52, 673-751 (2000)
19 Savini, I., DAngelo, I., Ranalli, M., Melino, G., and Avigliano, L., Ascorbic acid maintenance in HaCaT cells prevents radical formation and apoptosis by UVB. Free Radic. Biol. Med., 26, 1172-1180 (1999)   DOI   ScienceOn
20 LeBel, C. P., Ischiropoulos, H., and Bondy, S. C., Evaluation of the probe 2,7-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol., 5, 227-231 (1992)   DOI   ScienceOn
21 Riipi, M., Ossipov V., Lempa, K., Haukioja, E., Koricheva, J., Ossipova, S., and Pihlaja, K., Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics? Oecologia, 130, 380-390 (2002)   DOI   ScienceOn
22 Katiyar, S. K., Afaq, F., Perex, A., and Mukhtar, H., Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis, 22, 287-294 (2001)   DOI   ScienceOn
23 Aritomi, M., Chemical constituents in Aceraceous plants. 1. Flavonoid constituents in the leaves of Acer palmatum Thunberg. Yakugaku Zasshi, 83, 737-740 (1963)   DOI
24 Lee, B. C., Bae, J. T., Pyo, H. B., Choe, T. B., Kim, S. W., Hwang, H. J., and Yun, J. W., Biological activities of the polysaccharides produced from submerged culture of the edible Basidiomycete Grifola Frondosa. Enzyme Microb. Technol., 6274, 1-8 (2003)   DOI   ScienceOn
25 Seo, S. Y., Kim, E. Y., Kim, H., and Gwang, B. J., Neuroprotective effect of high glucose agains NMDA, free radical and oxygen-glucose deprivation through enhanced mitochondrial potentials. J. Neurosci., 19, 8849-8855 (1999)
26 Bors, W. and Michel, C., Chemistry of the antioxidant effect of polyphenols. Ann. N. Y. Acad. Sci., 957, 57-69 (2002)   DOI   PUBMED   ScienceOn
27 Nijveldt, R. J., Nood, E., Hoorn, D. EC, Boelens, P. G., Norren, K., and Leeuwen, P.AM, Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 74, 418-425 (2001)   DOI
28 Yoo, S. W., Kim, J. S., Kang, S. S., Son, K. H., Chang, H. W., Kim, H. P., Bae, K. H., and Lee, C. O., Constituents of the fruits and leaves of Euodia danielli. Arch. Pharm. Res., 25, 824-830 (2002)   DOI   ScienceOn
29 Dauborn, B. and Brueggemann, W., A spontaneous point mutation in rubisco large subunit gene impairing holoenzyme assemblyrenders the IV beta plastome mutant of Oenothera extremely light and chilling sensitive. Physiol. Plant, 104, 116-124 (1998)   DOI   ScienceOn
30 Feild, T. S., Lee, D. W., and Holbrook, N. M., Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood, Plant Physiol., 127, 566-574 (2001)   DOI   ScienceOn
31 Norins, A. L., Free radical formation in the skin following exposure to ultraviolet light. J. Invest. Dermatol., 39, 445-448 (1962)   DOI   ScienceOn
32 Khettab, N., Amory, M. C., Brigand, G., Bousquet, B., and Combre, A., Photoprotective effect of vitamins A and E on polyamine and oxygenated free radical metabolism in hairless mouse epidermis. Biochimie, 70, 1709-1713 (1988)   DOI   ScienceOn
33 Tobi, S. E., Gilbert, M., Paul, N., and McMillan, T. J., The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVA radiation. Int. J. Cancer, 102, 439-444 (2002)   DOI   ScienceOn
34 Aritomi, M., Chemical constituents in Aceraceous plants. 3. Flavonoid constituents in leaves of Acer cissifolium K. Koch. Chem. Pharm. Bull., 12, 841-843 (1964)   DOI   ScienceOn
35 Ham, I. H., Oh, I. S., Whang, W. K., and Kim I. H., Pharmacoconstituents of Korean cultivated Rhubarb leaves-the flavonoids from leaves. Yakhak Hoeji, 38, 469-475 (1994)
36 Greenham, J., Harborne, J. B., and Williams, C. A., Identification of lipophilic flavones and flavonols by comparative HPLC, TLC, and UV spectral analysis. Phytochem. Anal., 14, 100-118 (2003)   DOI   ScienceOn
37 Tampo, Y., Kotamraju, S., Chitambar, C. R., Kalivendi, S. V., Keszler, A., Joseph, J., and Kalyanaraman, B., Oxidative stress-induced iron signaling is responsible for peroxidedependent oxidation of dichlorodihydrofluorescein in endothelial cells. Circ. Res., 92, 56-63 (2003)   DOI   ScienceOn
38 Shibamoto, T., Sulfur-containing heterocyclic compounds with antioxidative activity. Am. Chem. Soc., 564, 247-256 (1994)