• 제목/요약/키워드: Free Motion

검색결과 1,388건 처리시간 0.028초

A Theoretical Study on Free Gyroscopic Compass

  • Jeong, Tae-Gweon;Park, Sok-Chu
    • 한국항해항만학회지
    • /
    • 제30권9호
    • /
    • pp.729-734
    • /
    • 2006
  • The authors aim to establish the theory necessary for developing the free gyroscopic compass and focus on mainly two points. One is to suggest north-finding principle by the angular velocity of the earth's rotation, and the other is to suggest orthogonal coordinate transformations of the motion rate of the spin axis, which transforms the components of motion rate in the free gyro frame into those in the platform frame and that this transformed rate is, in turn, transformed into the NED(north-east-down) navigation frame. Subsequently, ship's heading is obtained by using the fore-aft and athwartship components of the motion rate of the spin axis in the NED frame. In addition it was found how to solve the transformation matrix necessary for transforming each frame.

이산 웨이블렛 변환을 이용한 자유감쇠 횡요 데이타의 분리 (Decoupling of Free Decay Roll Data by Discrete Wavelet Transform)

  • Kwon, Sun-Hong;Lee, Hee-Sung;Lee, Hyoung-Suk;Ha, Mun-Keun
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.169-173
    • /
    • 2001
  • This study presents the results of decoupling of free decay roll test data by discrete wavelet transform. Free roll decay test was performed to decide the coefficients of damping terms in equation of motion. During the experiment, a slight yaw motion was found while the model was in the free roll decay motion. Discrete wavelet transform was applied to the signal to extract the pure roll motion. The results were compared to those of the Fourier transform. DWT was able to decouple the two signals efficiently while the Fourier transform was not.

  • PDF

Two-Dimensional Image-Based Respiratory Navigator for Free-Breathing Coronary Magnetic Resonance Angiography

  • Shin, Taehoon
    • Investigative Magnetic Resonance Imaging
    • /
    • 제22권1호
    • /
    • pp.71-77
    • /
    • 2018
  • Purpose: To develop a two-dimensional (2D) image-based respiratory motion correction technique for free-breathing coronary magnetic resonance angiography (MRA). Materials and Methods: The proposed respiratory navigator obtained aliased a 2D sagittal image from under-sampled k-space data and utilized motion correlation between the aliased images. The proposed navigator was incorporated into the conventional coronary MRA sequence including the diaphragm navigator and tested in three healthy subjects. Results: The delineation of major coronary arteries was significantly improved using the proposed 2D motion correction (S/I and A/P) compared to one-dimensional (S/I) correction using the conventional diaphragm navigator. Conclusion: The 2D image-based respiratory navigator was proposed for free-breathing coronary angiography and showed the potential for improving respiratory motion correction compared to the conventional 1D correction.

Nonlinear motion analysis of a two-link arm using first integrals

  • Yu, Kee-Ho;Takahashi, Takayuki;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.507-512
    • /
    • 1993
  • In this paper we discuss the nonlinear motion of a conservative two-link arm using first integrals, which includes one integral constant. In the analysis of the motion, the constant plays important role. First, we give some discussion on the free motion by focusing on the integral constant. As the result, the free motion can be classified into two types-the one is oscillation and the other is rotation. Second, we discuss the forced motion of the arm actuated only at the second joint. We take the first integral in a more general form, and show that the forced motion of the second link can be expressed as a variation of the integral constant. Also, the characteristic of the forced motion actuated by arbitrary constant torques is discussed.

  • PDF

넓은 유리 광 배 근피부 판을 이용한 하지 재건술 (Reconstruction of the Lower Extremities with the Large Latissimus Dorsi Myocutaneous Free Flap)

  • 이준모;허달영
    • Archives of Reconstructive Microsurgery
    • /
    • 제9권1호
    • /
    • pp.80-87
    • /
    • 2000
  • Acute high speed accidents that results in full thickness skin defect and exposure of tendon, nerve, vessel and periosteum over denuded bone demands soft tissue coverage. Exposed bone often ensues chronic infection and requires free flap transplantation which surely covers defects in one stage operation and enhances transport of oxygen-rich blood and converts a non-osteogenic or partially osteogenic site into a highly osteogenic site, but exposed bone which had performed free flap transplantation sometimes necroses and needs secondary bone procedure. Scar contracture limits joint motion should be excised and covered with normal soft tissue to restore normal range of motion. Authors have performed the large latissimus dorsi myocutaneous free flap in 8 cases of extensive soft tissue defect and exposed bone lesion in the leg and 1 case of the flap was failed. The secondary ilizarov bone procedure was performed in 3 of 8 cases. 2 cases of large burn scar contracture and 1 case of posttraumatic scar contracture in lower extremity were restored with the large latissimus dorsi myocutaneous free flap. Authors concluded that large latissimus dorsi myocutaneous free flap is the most acceptable microvascular procedure in large soft tissue defect combined with exposed periosteum and bone requiring secondary bone procedure and in large burn scar contracture limiting knee joint motion.

  • PDF

바이패드 로봇의 안정적인 거동을 위한 제어 (Biped Robot Control for Stable Walking)

  • 김경대;박종형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.311-314
    • /
    • 1995
  • Biped locomotion can be simply modeled as a linear inverted pendulum mode. This model considers only the CG (center of gravity) of the entire system. But in real biped robot systems, the free-leg motion dynamics is not negligible. So if its dynamics is not considered in designing the reference CG motion, it is badly influence to the ZMP(zero moment point) position of the biped robot walking in the sagittal plane. Therefore, we modeled the biped locomotion similar to the linear inverted pendulum mode but considered the predetermined free-leg dynamics. To verify that the proposed biped locomotion is more stable than the linear inverted pendulum mode, we constructed a biped robot simulator and designed a serco controller to track both the reference motion of the free leg and the reference motion of CG of the biped robot using the computed torque control low. And through simulations, we verified that the proposed walking is better in stability than the one based on the linear inverted pendulum mode.

  • PDF

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제7권3호
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

Flexible Motion Realized by Force-free Control: Pull-Out Work by an Articulated Robot Arm

  • Kushida, Daisuke;Nakamura, Masatoshi;Goto, Satoru;Kyura, Nobuhiro
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.464-473
    • /
    • 2003
  • A method for force-free control is proposed to realize pull-out work by an industrial articulated robot arm. This method achieves not only non-gravity and non-friction motion of an articulated robot arm according to an exerted force but also reflects no change in the structure of the servo controller. Ideal performance of a pull-out work by the force-free control method was assured by means of simulation and experimental studies with a two-degree-of-freedom articulated robot arm.

A Theoretical Study on Free Gyrocompass

  • Park, Sok-Chu;Jeong, Tae-Gweon
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 추계학술대회 논문집(제1권)
    • /
    • pp.9-14
    • /
    • 2006
  • The authors aim to establish the theory necessary for developing the free gyrocompass. The following considerations are taken. One is to suggest north-finding principle by the angular velocity of the earth's rotation, and the other is to suggest that the motion rate of the spin axis in the free gyro frame is transformed into the platform fame and this transformed rate is again transformed into the NED navigation frame. After transformation ship's heading is obtained using the fore-aft and athwartship components of the motion rate of the spin axis in the NED frame In addition it was suggested how to solve the transformation matrix necessary for transforming each frame.

  • PDF

THE ATTITUDE STABILITY ANALYSIS OF A RIGID BODY WITH MULTI-ELASTIC APPENDAGES AND MULTI-LIQUID-FILLED CAVITIES USING THE CHETAEV METHOD

  • Kuang, Jin-Lu;Kim, Byung-Jin;Lee, Hyun-Woo;Sung, Dan-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.209-220
    • /
    • 1998
  • The stability problem of steady motion of a rigid body with multi-elastic appendages and multi-liquid-filled cavities, in the presence of no external forces or torque, is considered in this paper. The flexible appendages are modeled as the clamped -free-free-free rectangular plates, or/and as the discrete mass- spring sub-system. The motion of liquid in every single ellipsoidal cavity is modeled as the uniform vortex motion with a finite number of degrees of freedom. Assuming that stationary holonomic constraints imposed on the body allow its rotation about a spatially fixed axis, the equation of motion for such a systematic configuration can be very complex. It consists of a set of ordinary differential equations for the motion of the rigid body, the uniform rotation of the contained liquids, the motion of discrete elastic parts, and a set of partial differential equations for the elastic appendages supplemented by appropriate initial and boundary conditions. In addition, for such a hybrid system, under suitable assumptions, their equations of motion have four types of first integrals, i.e., energy and area, Helmholtz' constancy of liquid - vortexes, and the constant of the Poisson equation of motion. Chetaev's effective method for constructing Liapunov functions in the form of a set of first integrals of the equations of the perturbed motion is employed to investigate the sufficient stability conditions of steady motions of the complete system in the sense of Liapunov, i.e., with respect to the variables determining the motion of the solid body and to some quantities which define integrally the motion of flexible appendages. These sufficient conditions take into account the vortexes of the contained liquids, the vibration of the flexible components, and coupling among the liquid-elasticity solid.

  • PDF