• 제목/요약/키워드: Frame structure

검색결과 2,432건 처리시간 0.041초

EMI/EMC 환경에서 PCB와 Frame구조물의 전자기 방사특성 해석 (Numerical Analysis of Electromagnetic Radiation Characteristic of PCB and Frame Structure in EMI/EMC)

  • 최윤석;김영선;황보훈;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.715-716
    • /
    • 2006
  • Nowadays, research of EMI/EMC is very important in electromagnetic wave surroundings generated from many electric and electronic devices. Especially, analysis of electromagnetic radiation characteristic and field have to be performed first of all. At the present most of EMI/EMC problems are solved by the method of practice and inspiration. Hence in this paper, will provide the first step for solving EMI/EMC problems in design process. Model of analysis is structure composed of PCB and Frame. By the first step, theory of dipole antenna is adapted to analyze electromagnetic radiation characteristic and field. Because it is fundamental of analysis of electromagnetic radiation. And it will be expanded for structure of PCB and Frame. Finally, it provide the basic method of analysis of electromagnetic radiation characteristic and field by making similar dipole antenna to PCB and Frame structure.

  • PDF

Collapse behaviour in reciprocal frame structures

  • Garavaglia, Elsa;Pizzigoni, Attilio;Sgambi, Luca;Basso, Noemi
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.533-547
    • /
    • 2013
  • "Reciprocal Frame" refers to a self-supporting grid structure used both for floor and roof. Using Finite Element Methods for non-linear solid mechanics and frictional-contact, this paper intends to analytically and numerically investigate the collapse behaviour of a reciprocal frame structure made of fibre-reinforced concrete. Considering a simple 3-beam structure, it has been investigated using a solid finite element model. Once defined the collapse behaviour of the simple structure, the analysis has been generalized using a concentrated plasticity finite element method. Results provided will be useful for studying generic reciprocal frame structures with several beams.

Conceptual configuration and seismic performance of high-rise steel braced frame

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Li, Weichen
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.173-186
    • /
    • 2017
  • Conceptual configuration and seismic performance of high-rise steel frame-brace structure are studied. First, the topology optimization problem of minimum volume based on truss-like material model under earthquake action is presented, which is solved by full-stress method. Further, conceptual configurations of 20-storey and 40-storey steel frame-brace structure are formed. Next, the 40-storeystructure model is developed in Opensees. Two common configurations are utilized for comparison. Last, seismic performance of 40-storey structure is derived using nonlinear static analysis and nonlinear dynamic analysis. Results indicate that structural lateral stiffness and maximum roof displacement can be improved using brace. Meanwhile seismic damage can also be decreased. Moreover, frame-brace structure using topology optimization is most favorable to enhance lateral stiffness and mitigate seismic damage. Thus, topology optimization is an available way to form initial conceptual configuration in high-rise steel frame-brace structure.

Cost Analysis of the Structural Work of Green Frame

  • Joo, Jin-Kyu;Kim, Sun-Kuk;Lee, Goon-Jae;Lim, Chae-Yeon
    • 한국건축시공학회지
    • /
    • 제12권4호
    • /
    • pp.401-414
    • /
    • 2012
  • The adoption of Green Frame is expected to provide economic benefits, since construction costs are reduced by the in-situ production of precast concrete column and beam. The cost reduction can ultimately be realized by saving transportation costs and the overhead and profit of PC plants. The cost structure of Green Frame, which is built up using composite precast concrete members, is similar to that of a bearing-wall structure, but the difference in construction process has resulted in some cost differences for a few items. In particular, production and installation is the principal work involved in Green Frame made by precast concrete members, while form and concrete work is the principal work for a bearing-wall structure. As such, the rental time and fee for a tower crane should be compared through time analysis. To verify reliability, this study focused on developed residential projects to estimate the construction costs. Through this analysis, it was found that the costs of Green Frame were 1.57% lower than the costs of bearing-wall structure. The results of this study will help in the development of a management plan for the structural work of Green Frame.

RC 라멘조에 SMART Frame 적용 시 효용성 분석 (Performance Analysis of SMART Frame Applied to RC Column-Beam Structures)

  • 조원현;임채연;장덕배;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.168-169
    • /
    • 2015
  • SMART Frame is a composite precast concrete structure system to deliver the advantages of both steel frame and reinforced concrete. Many studies have established to date that SMART Frame is more advantageous than conventional frame-type structure in terms of structural stability, constructability, economic viability as well as reduction of construction schedule. However, such studies have focused primarily on wall-type or flat slab-type apartment housing structures, failing to include Rahmen structures in their scope. Accordingly, this study aims to analyze the benefits of potential application of SMART Frame to RC Rahmen structures. As the structural stability and constructability of SMART Frame is already proven, this study reviews its benefits from the perspective of cost reduction. Conclusion of this study will be used subsequently in predicting the benefits of SMART Frame when it is adapted to RC Rahmen structures.

  • PDF

비선형 동적해석을 통한 입체라멘 교각의 파괴 메카니즘 모사 (Numerical Simulation of Failure Mechanism of Space Frame Structure by Nonlinear Dynamic Analysis)

  • 김익현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.348-355
    • /
    • 2000
  • The characteristics on non linear behavior and the failure mechanism of RC space frame structure serving railway under seismic action have been investigated by numerical analysis in time domain. The structure concerned is modeled in 3 dimensional extent and RC frame elements with fibers are employed. Fibers are characterized as RC one and PL one to distinguish different energy release after cracking. Due to deviation of mass center and stiffness center of entire structure the complex behavior under seismic action is shown. The excessive shear force is concentrated on the pier beside flexible one relatively, which leads to failure of bridge concerned.

  • PDF

프레임구조물의 터널시공에 따른 거동분석 (Response Analysis of Frame Structures with the Consideration of Tunnel Construction)

  • 손무락;박재현
    • 대한토목학회논문집
    • /
    • 제32권3C호
    • /
    • pp.121-127
    • /
    • 2012
  • 본 논문은 터널건설로 인해 발생된 인접지반에서의 지반변위가 프레임구조물에 미치는 영향을 터널 시공조건(지반손실)을 달리하면서 조사한 것이다. 터널굴착에 의해 발생된 지반변위에 노출된 4층 오픈 프레임구조물과 블록으로 채워진 프레임구조물이 서로 다른 시공조건(지반손실)에 노출될 때 발생되는 구조물 거동을 수치해석을 통해 조사하였다. 오픈 프레임구조물은 탄성구조물로서 모델링 한 반면, 블록으로 채워진 프레임구조물은 소요전단 및 인장강도 이상의 응력이 발생할 때 구조물에 실제크랙이 발생할 수 있도록 모델링하였다. 터널굴착유발 지반변위에 노출된 두 서로 다른 프레임구조물의 거동 및 손상정도를 터널 시공조건에 따라 조사하였으며, 발생된 구조물의 거동 및 손상정도는 구조물에 발생한 변형, 크랙크기 및 분포를 고려하여 서로 비교하였다. 뿐만 아니라, 다양한 시공조건(지반손실)의 변화에 의해 구조물에 유발될 수 있는 손상정도의 크기를 손상도 예측기준(Son and Cording, 2005)을 사용하여 제시하였다. 이러한 결과들은 향후 터널굴착으로 인해 유발되는 인접 프레임구조물의 손상을 제어하고 최소화하는데 필요한 정보를 제공할 것이다.

Wavelet analysis based damage localization in steel frames with bolted connections

  • Pnevmatikos, Nikos G.;Blachowski, Bartlomiej;Hatzigeorgiou, George D.;Swiercz, Andrzej
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1189-1202
    • /
    • 2016
  • This paper describes an application of wavelet analysis for damage detection of a steel frame structure with bolted connections. The wavelet coefficients of the acceleration response for the healthy and loosened connection structure were calculated at each measurement point. The difference of the wavelet coefficients of the response of the healthy and loosened connection structure is selected as an indicator of the damage. At each node of structure the norm of the difference of the wavelet coefficients matrix is then calculated. The point for which the norm has the higher value is a candidate for location of the damage. The above procedure was experimentally verified on a laboratory-scale 2-meter-long steel frame. The structure consists of 11 steel beams forming a four-bay frame, which is subjected to impact loads using a modal hammer. The accelerations are measured at 20 different locations on the frame, including joints and beam elements. Two states of the structure are considered: healthy and damaged one. The damage is introduced by means of loosening two out of three bolts at one of the frame connections. Calculating the norm of the difference of the wavelet coefficients matrix at each node the higher value was found to be at the same location where the bolts were loosened. The presented experiment showed the effectiveness of the wavelet approach to damage detection of frame structures assembled using bolted connections.

메가골조구조물 전용 해석프로그램의 개발 (Development of Analysis Program for Mega Frame System)

  • 김현수;유일향;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.873-880
    • /
    • 2006
  • Since the mega frame structure has significant numbers of elements and nodes, it takes tremendous times and computer memories to analyze and design the structures. Therefore, the exclusive structural analysis program for mega frame system is developed to reduce the efforts and time required for the analysis and design of mega frame structure. To this end, an efficient modelling technique using the characteristics of mega frame structures and an efficient analytical model, which uses a few DOFs selected by the user using the matrix condensation method. are developed in tins study. Static and dynamic analyses are conducted using an example structure.

  • PDF

Coupled testing-modeling approach to ultimate state computation of steel structure with connections for statics and dynamics

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Mesic, Esad
    • Coupled systems mechanics
    • /
    • 제7권5호
    • /
    • pp.555-581
    • /
    • 2018
  • The moment-resistant steel frames are frequently used as a load-bearing structure of buildings. Global response of a moment-resistant frame structure strongly depends on connections behavior, which can significantly influence the response and load-bearing capacity of a steel frame structure. The analysis of a steel frame with included joints behavior is the main focus of this work. In particular, we analyze the behavior of two connection types through experimental tests, and we propose numerical beam model capable of representing connection behavior. The six experimental tests, under monotonic and cyclic loading, are performed for two different types of structural connections: end plate connection with an extended plate and end plate connection. The proposed damage-plasticity model of Reissner beam is able to capture both hardening and softening response under monotonic and cyclic loading. This model has 18 constitutive parameters, whose identification requires an elaborate procedure, which we illustrate in this work. We also present appropriate loading program and arrangement of measuring equipment, which is crucial for successful identification of constitutive parameters. Finally, throughout several practical examples, we illustrate that the steel structure connections are very important for correct prediction of the global steel frame structure response.