• Title/Summary/Keyword: Frame Selection

Search Result 331, Processing Time 0.024 seconds

Effect of dimensionless nonlocal parameter: Vibration of double-walled CNTs

  • Hussain, Muzamal;Asghar, Sehar;Khadimallah, Mohamed Amine;Ayed, Hamdi;Alghamdi, Sami;Bhutto, Javed Khan;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, frequency vibrations of double-walled carbon nanotubes (CNTs) has been investigated based upon nonlocal elastic theory. The inference of small scale is being perceived by establishing nonlocal Love shell model. The wave propagation approach has been operated to frame the governing equations as eigen value system. An innovational nonlocal model to examine the scale effect on vibrational behavior of armchair, zigzag and chiral of double-walled CNTs. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of dimensionless nonlocal parameter has been studied in detail. The dominance of end condition via nonlocal parameter is explained graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

Low-Power CMOS image sensor with multi-column-parallel SAR ADC

  • Hyun, Jang-Su;Kim, Hyeon-June
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.223-228
    • /
    • 2021
  • This work presents a low-power CMOS image sensor (CIS) with a multi-column-parallel (MCP) readout structure while focusing on improving its performance compared to previous works. A delta readout scheme that utilizes the image characteristics is optimized for the MCP readout structure. By simply alternating the MCP readout direction for each row selection, additional memory for the row-to-row delta readout is not required, resulting in a reduced area of occupation compared to the previous work. In addition, the bias current of a pre-amplifier in a successive approximate register (SAR) analog-to-digital converter (ADC) changes according to the operating period to improve the power efficiency. The prototype CIS chip was fabricated using a 0.18-㎛ CMOS process. A 160 × 120 pixel array with 4.4 ㎛ pitch was implemented with a 10-bit SAR ADC. The prototype CIS demonstrated a frame rate of 120 fps with a total power consumption of 1.92 mW.

Computer aided design system for robotic painting line (동장공정의 로보틱자동화를 위한 설계지원 시스템)

  • Suh, Suk-Hwan;Cho, Jung-Hoon;Kang, Dae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.171-179
    • /
    • 1994
  • For successful implementation of robotic painting system, a structured design and analysis procedure is necessary. In designing robotic system, both functional and economical feasibility should be investigated. As the robotization is complicated task involving implemen- tation details (such as robot selection, accessory design, and spatial layout) together with operation details, the computer aided design and analysis method should be sought. However, conventional robotic design systems and off-line programming systems cannot accommodate these inquiries in a unified fashion. In this research, we develop an interactive design support system for robotization of a cycle painting line. With the developed system called SPRPL (Simulation Package for Robotic Painting Line) users can design the painting objects (via FRAME module), select robot model (ROBOT), design the part hanger (FEEDER), and arrange the workcell. After motion programming (MOTION), the design is evaluated in terms of: a) workpace analysis, b) coating thickness analysis, and c) cycle time (ANALYSIS).

  • PDF

A fuzzy grey predictor for civil frame building via Lyapunov criterion

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-Yuan;Chen, Timothy
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.357-367
    • /
    • 2022
  • In this paper, we propose an efficient control method that can be transformed into a general building control problem for building structure control using these reliability criteria. To facilitate the calculation of controller H∞, an efficient solution method based on Linear Matrix Inequality (LMI) is introduced, namely H∞-based LMI control. In addition, a self-tuning predictive grey fuzzy controller is proposed to solve the problem caused by wrong parameter selection to eliminates the effect of dynamic coupling between degrees of freedom (DOF) in Self-Tuning Fuzzy Controllers. We prove stability using Lyapunov's stability theorem. To check the applicability of the proposed method, the proposed controller is applied and the control characteristics are determined. The simulation assumes system uncertainty in the controller design and emphasizes the use of acceleration feedback as a practical consideration. Simulation results show that the performance of the proposed controller is impressive, stable, and consistent with the performance of LMI-based methods. Therefore, an effective control method is suitable for seismic reinforcement of civil buildings.

Joint frame rate adaptation and object recognition model selection for stabilized unmanned aerial vehicle surveillance

  • Gyu Seon Kim;Haemin Lee;Soohyun Park;Joongheon Kim
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.811-821
    • /
    • 2023
  • We propose an adaptive unmanned aerial vehicle (UAV)-assisted object recognition algorithm for urban surveillance scenarios. For UAV-assisted surveillance, UAVs are equipped with learning-based object recognition models and can collect surveillance image data. However, owing to the limitations of UAVs regarding power and computational resources, adaptive control must be performed accordingly. Therefore, we introduce a self-adaptive control strategy to maximize the time-averaged recognition performance subject to stability through a formulation based on Lyapunov optimization. Results from performance evaluations on real-world data demonstrate that the proposed algorithm achieves the desired performance improvements.

Implementation of Intelligent Image Surveillance System based Context (컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구)

  • Moon, Sung-Ryong;Shin, Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • This paper is a study on implementation of intelligent image surveillance system using context information and supplements temporal-spatial constraint, the weak point in which it is hard to process it in real time. In this paper, we propose scene analysis algorithm which can be processed in real time in various environments at low resolution video(320*240) comprised of 30 frames per second. The proposed algorithm gets rid of background and meaningless frame among continuous frames. And, this paper uses wavelet transform and edge histogram to detect shot boundary. Next, representative key-frame in shot boundary is selected by key-frame selection parameter and edge histogram, mathematical morphology are used to detect only motion region. We define each four basic contexts in accordance with angles of feature points by applying vertical and horizontal ratio for the motion region of detected object. These are standing, laying, seating and walking. Finally, we carry out scene analysis by defining simple context model composed with general context and emergency context through estimating each context's connection status and configure a system in order to check real time processing possibility. The proposed system shows the performance of 92.5% in terms of recognition rate for a video of low resolution and processing speed is 0.74 second in average per frame, so that we can check real time processing is possible.

Multi-View Video System using Single Encoder and Decoder (단일 엔코더 및 디코더를 이용하는 다시점 비디오 시스템)

  • Kim Hak-Soo;Kim Yoon;Kim Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.116-129
    • /
    • 2006
  • The progress of data transmission technology through the Internet has spread a variety of realistic contents. One of such contents is multi-view video that is acquired from multiple camera sensors. In general, the multi-view video processing requires encoders and decoders as many as the number of cameras, and thus the processing complexity results in difficulties of practical implementation. To solve for this problem, this paper considers a simple multi-view system utilizing a single encoder and a single decoder. In the encoder side, input multi-view YUV sequences are combined on GOP units by a video mixer. Then, the mixed sequence is compressed by a single H.264/AVC encoder. The decoding is composed of a single decoder and a scheduler controling the decoding process. The goal of the scheduler is to assign approximately identical number of decoded frames to each view sequence by estimating the decoder utilization of a Gap and subsequently applying frame skip algorithms. Furthermore, in the frame skip, efficient frame selection algorithms are studied for H.264/AVC baseline and main profiles based upon a cost function that is related to perceived video quality. Our proposed method has been performed on various multi-view test sequences adopted by MPEG 3DAV. Experimental results show that approximately identical decoder utilization is achieved for each view sequence so that each view sequence is fairly displayed. As well, the performance of the proposed method is examined in terms of bit-rate and PSNR using a rate-distortion curve.

Improvement of Gill Net and Trap Net Fishing for the Resource Management in the Southern Sea of Korea (남해구 자원관리형 자망 · 통발 어구어법 기술개발 -붕장어 Conger myriaster 그물통발의 망목선택성-)

  • Lee, Ju-Hee;Kwon, Byeong-Guk;Lee, Chun-Woo;Kim, Hyung-Seok;Jeong, Soon-Beom;Cho, Young-Bok;Yoo, Jae-Bum;Kim, Seong-Hun;Kim, Bu-Yeung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • This study was conducted to examine the mesh selecivity and optimum mesh size of spring frame trap for conger eel. Conger myriaster. It was carried out on 25th Sep. 2002 at the coastal sea of Nung-po, Geojedo. The experimental fishing gear was used in five kinds of different mesh size spring frame trap that were 15mm, 20mm, 25mm, 30mm and 35mm, and one plastic pot as control fishing gear that was 6.7mm hole diameter. The mesh size 15mm, 20mm are the current gears, 25mm, 30mm are used in experiment, and 35mm is the legal mesh. These were made 50 traps, respectively. The mesh selectivity curve was analysed by the Kitahara's method(1968) and the optimum mesh size was estimated by relationship between the total length and diameter of conger eel and by the mesh selectivity master curve. The results obtained are summarized follows : 1. The total number of catch by the trap for conger eel was 835, it was consisted of 537 conger eel(64.4), 225 crabs(2639%) and 73 others(8.7%). 2. The value of maximum 1/m on the mesh selectivity curve was estimated at about 23.9. 3. The optimum mesh size of spring frame trap for conger eel was estimated 34.0mm in 50% selection range of the mesh selectivity master curve.

A Gene-based dCAPS Marker for Selecting old-gold-crimson (ogc) Fruit Color Mutation in Tomato (토마토 과색 돌연변이 유전자(old-gold-crimson) 선발을 위한 dCAPS 분자표지 개발)

  • Park, Young-Hoon;Lee, Yong-Jae;Kang, Jum-Soon;Choi, Young-Whan;Son, Beung-Gu
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.152-155
    • /
    • 2009
  • The old-gold-crimson ($og^c$) fruit color mutation produces deep red tomato fruit with high lycopene content. age is a null mutation allele of lycopene-${\beta}$-cyclase (Crt-b) gene (B locus) that converts lycopene to ${\beta}$-carotene in the cartenoid biosynthesis pathway in tomato. Breeding of high lycopene tomato cultivars can be accelerated by marker-assisted selection (MAS) for introgression of $og^c$ allele by using a gene-based DNA marker. In order to develop a marker, single nucleotide deletion of adenine(A) with. in a poly-A repeat that has been known to be responsible for frame-shift mutation of $og^c$ was confirmed by resequencing mutant allele and wild-type allele at B locus of several tomato lines. For allele discrimination and detection of $og^c$, derived CAPS (dCAPS) approach was used by designing a primer that artificially introduced restriction enzyme recognition site of Hin fI in PCR products from $og^c$ allele. This dCAPS marker is co-dominant gene-based PCR marker that can be efficiently used for MAS breeding program aiming the development of high lycopene tomato.

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.