• Title/Summary/Keyword: Fractured surfaces

Search Result 159, Processing Time 0.023 seconds

Dismantling and Restoration of the Celadon Stool Treasure with an Openwork Ring Design (보물 청자 투각고리문 의자의 해체 및 복원)

  • KWON, Ohyoung;LEE, Sunmyung;LEE, Jangjon;PARK, Younghwan
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.200-211
    • /
    • 2022
  • The celadon stools with an openwork ring design which consist of four items as one collection were excavated from Gaeseong, Gyeonggi-do Province. The celadon stools were designated and managed as treasures due to their high arthistorical value in the form of demonstrating the excellence of celadon manufacturing techniques and the fanciful lifestyles during the Goryeo Dynasty. However, one of the items, which appeared to have been repaired and restored in the past, suffered a decline in aesthetic value due to the aging of the treatment materials and the lack of skill on the part of the conservator, raising the need for re-treatment as a result of structural instability. An examination of the conservation condition prior to conservation treatment found structural vulnerabilities because physical damage had been artificially inflicted throughout the area that was rendered defective at the time of manufacturing. The bonded surfaces for the cracked areas and detached fragments did not fit, and these areas and fragments had deteriorated because the adhesive trickled down onto the celadon surface or secondary contaminants, such as dust, were on the adhesive surface. The study identified the position, scope, and conditions of the bonded areas at the cracks UV rays and microscopy in order to investigate the condition of repair and restoration. By conducting Fourier-transform infrared spectroscopy(FT-IR) and portable x-ray fluorescence spectroscopy on the materials used for the former conservation treatment, the study confirmed the use of cellulose resins and epoxy resins as adhesives. Furthermore, the analysis revealed the addition of gypsum(CaSO4·2H2O) and bone meal(Ca10 (PO4)6(OH)2) to the adhesive to increase the bonding strength of some of the bonded areas that sustained force. Based on the results of the investigation, the conservation treatment for the artifact would focus on completely dismantling the existing bonded areas and then consolidating vulnerable areas through bonding and restoration. After removing and dismantling the prior adhesive used, the celadon stool was separated into 6 large fragments including the top and bottom, the curved legs, and some of the ring design. After dismantling, the remaining adhesive and contaminants were chemically and physically removed, and a steam cleaner was used to clean the fractured surfaces to increase the bonding efficacy of the re-bonding. The bonding of the artifact involved applying the adhesive differently depending on the bonding area and size. The cyanoacrylate resin Loctite 401 was used on the bonding area that held the positions of the fragments, while the acrylic resin Paraloid B-72 20%(in xylene) was treated on cross sections for reversibility in the areas that provided structural stability before bonding the fragments using the epoxy resin Epo-tek 301-2. For areas that would sustain force, as in the top and bottom, kaolin was added to Epo-tek 301-2 in order to reinforce the bonding strength. For the missing parts of the ring design where a continuous pattern could be assumed, a frame was made using SN-sheets, and the ring design was then modeled and restored by connecting the damaged cross section with Wood epos. Other restoration areas that occurred during bonding were treated by being filled with Wood epos for aesthetic and structural stabilization. Restored and filled areas were color-matched to avoid the feeling of disharmony from differences of texture in case of exhibitions in the future. The investigation and treatment process involving a variety of scientific technology was systematically documented so as to be utilized as basic data for the conservation and maintenance.

Shear bond strength of dental CAD-CAM hybrid restorative materials repaired with composite resin (치과용 복합레진으로 수리된 CAD-CAM hybrid 수복물의 전단결합강도)

  • Moon, Yun-Hee;Lee, Jonghyuk;Lee, Myung-Gu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.193-202
    • /
    • 2016
  • Purpose: This study was performed in order to assess the effect of the surface treatment methods and the use of bonding agent on the shear bond strength (SBS) between the aged CAD-CAM (computer aided design-computer aided manufacturing) hybrid materials and added composite resin. Materials and methods: LAVA Ultimate (LU) and VITA ENAMIC (VE) specimens were age treated by submerging in a $37^{\circ}C$ water bath filled with artificial saliva (Xerova solution) for 30 days. The surface was ground with #220 SiC paper then the specimens were divided into 9 groups according to the combination of the surface treatment (no treatment, grinding, air abrasion with aluminum oxide, HF acid) and bonding agents (no bonding, Adper Single Bond 2, Single Bond Universal). Each group had 10 specimens. Specimens were repaired (added) using composite resin (Filtek Z250), then all the specimens were stored for 7 days in room temperature distilled water. SBS was measured and the fractured surfaces were observed with a scanning electron microscope (SEM). One-way ANOVA and Scheffe test were used for statistical analysis (${\alpha}=.05$). Results: Mostly groups with bonding agent treatment showed higher SBS than groups without bonding agent. Among the groups without bonding agent the groups with aluminum oxide treatment showed higher SBS. However there was no significant difference between groups except two subgroups within LU group, which revealed a significant increase of SBS when Single Bond Universal was used on the ground LU specimen. Conclusion: The use of bonding agent when repairing an aged LAVA Ultimate restoration is recommended.

Effect on Shear Strength of Ceramic Surface Treatment Materials and Three Resin Cements to IPS Empress 2 (표면 처리재와 레진 시멘트가 IPS Empress 2의 전단결합강도에 미치는 영향)

  • Yae, Sun-Hae;Lee, Kyubok;Lee, Cheong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.157-170
    • /
    • 2002
  • The purpose of this study is to analyze the shear bond strength according to kinds of surface treatment agents and resin cements after acid etching of IPS Empress 2. For this purpose, test groups were classified into silane-treated bonding groups, silica-coated group and Targis link applied group. Then, nine bonding groups in total, each three groups per kind, were prepared by using three kinds of resin cements-Panavia F, Variolink II and Rely-X ARC, and thirty test specimens per group were prepared. To examine any changes in the oral environment, the shear bond strength of each test specimen was measured after dipping test for 24 hours and for five weeks, respectively, in distilled water at $37^{\circ}C$ and performing heat cycle 10,000 times in total, each 2,000 times per week, during a five weeks of dipping, under the condition similar to the oral environment. The bond failure modes were also observed by means of a scanning electron microscope. The results are summarized as follows 1. Statically significant differences between the surface conditioning materials were observed. The shear strength of the silane treatment was the highest of all three types of surface treatments(p<0.001). 2. Shear strengths varied significantly for different types of resin luting agents. But bond strength of Targis link surface treatments were not significantly different(p<0.05). 3. No significant difference of bonding strengths was found between storage time conditions(24 hours and 5 weeks). Only group II, IV, VII, IX were significantly different(p<0.05). 4. After thermocycling, the shear bond strengths of all groups were significantly decreased (p<0.05). Group III, V, VI were no significantly different. 5. On the SEM observation of fractured surfaces, all groups were shown complex failure.

A STUDY ON IN VIVO AND IN VITRO AMALGAM CORROSION (아말감의 구강내 부식 및 인공 부식에 관한 연구)

  • Lim, Byong-Mok;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.1-33
    • /
    • 1997
  • The objective of this study was to analyze the in vitro and in vivo corrosion products of low and high copper amalgams. The four different types of amalgam alloy used in this study were Fine cut, Caulk spherical, Dispersalloy, and Tytin. After each amalgam alloy and Hg were triturated according to the directions of the manufacturer by means of the mechanical amalgamator(Amalgam mixer. Shinhung Co. Korea), the triturated mass was inserted into a cylindrical metal mold which was 12mm in diameter and 10mm in height. The mass was condensed by 150Kg/cm compressive force. The specimen was removed from the mold and aged at room temperature for about seven days. The standard surface preparation was routinely carried out by emery paper polishing under running water. In vitro amalgam specimens were potentiostatically polarized ten times in a normal saline solution at $37^{\circ}C$(potentiostat : HA-301. Hukuto Denko Corp. Japan). Each specimen was subjected to anodic polarization scan within the potential range -1700mV to+400mV(SCE). After corrosion tests, anodic polarization curves and corrosion potentials were obtained. The amount of component elements dissolved from amalgams into solution was measured three times by ICP AES(Inductive Coupled Plasma Atomic Emission Spectrometry: Plasma 40. Perkim Elmer Co. U.S.A.). The four different types of amalgam were filled in occlusal and buccal class I cavities of four human 3rd molars. After about five years the restorations were carefully removed after tooth extraction to preserve the structural details including the deteriorated margins. The occlusal surface, amalgam-tooth interface and the fractured surface of in vivo amalgam corrosion products were analyzed. In vivo and in vitro amalgam specimens were examined and analyzed metallographically by SEM(Scanning Electron Microscope: JSM 840. Jeol Co. Japan) and EDAX(Energy Dispersive Micro X-ray Analyser: JSM 840. Jeol Co. Japan). 1. The following results are obtained from in vitro corrosion tests. 1) Corrosion potentials of all amalgams became more noble after ten times passing through the in vitro corrosion test compared to first time. 2) After times through the test, released Cu concentration in saline solution was almost equal but highest in Fine cut. Ag and Hg ion concentration was highest in Caulk spherical and Sn was highest in Dispersalloy. 3) Analyses of surface corrosion products in vitro reveal the following results. a)The corroded surface of Caulk spherical has Na-Sn-Cl containing clusters of $5{\mu}m$ needle-like crystals and oval shapes of Sn-Cl phase, polyhedral Sn oxide phase. b)In Fine cut, there appeared to be a large Sn containing phase, surrounded by many Cu-Sn phases of $1{\mu}m$ granular shapes. c)Dispersalloy was covered by a thick reticular layer which contained Zn-Cl phase. d)In Tytin, a very thin, corroded layer had formed with irregularly growing Sn-Cl phases that looked like a stack of plates. 2. The following results are obtained by an analysis of in vivo amalgam corrosion products. 1) Occlusal surfaces of all amalgams were covered by thick amorphous layers containing Ca-P elements which were abraded by occlusal force. 2) In tooth-amalgam interface, Ca-P containing products were examined in all amalgams but were most clearly seen in low copper amalgams. 3) Sn oxide appeared as a polyhedral shape in internal space in Caulk spherical and Fine cut. 4) Apical pyramidal shaped Sn oxide and curved plate-like Sn-Cl phases resulted in Dispersalloy. 5) In Tytin, Sn oxide and Sn hydroxide were not seen but polyhedral Ag-Hg phase crystal appeared in internal space which assumed a ${\beta}_l$ phase.

  • PDF

AN EXPERIMENTAL STUDY ON THE MICROTENSILE BONDING STRENGTH OF DENTIN TREATED BY $CARISOLV^{TM}$ ($Carisolv^{TM}$ 에 의한 우식제거후 Microtensile Bonding Strength에 관한 연구)

  • Baik, Byeong-Ju;Kwon, Byoung-Woo;Kim, Jae-Gon;Cheon, Cheol-Wan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.389-396
    • /
    • 2002
  • The purpose of this study was to compare the microtensile bonding strength of chemomechanically excavated dentin($Carisolv^{TM}$) to conventional caries removal(bur). The following adhesive systems were used; AB: All-Bond 2(3M, USA), PB: Prime & Bond 2.1(Dentsply, DE), AQ: AQ Bond(sun medical, Japan). 42 human molars with occlusal caries were assigned to 6 groups. Sequential caries removal was controlled with laser fluorescence. Each group was devided as follows; group A, B, C were $Carisolv^{TM}$ applied, group D,E,F were bur used. In group A and D, AB was used as a dentin adhesive. group B,E and group C,F was AQ and AQ was used each. The cavity was filled with composite resin(Z-100). The specimens were sectioned vertically into multiple serial 0.7 mm thick slabs. And then those slabs were sectioned into rectangular parts under 0.7 mm width. Finally 0.7-1.0 mm a right hexahedron shape stick become. Microtensile bonding test was carried out with testing apparatus at cross-head speed of $0.5\;mm/min^{-1}$ and fractured surfaces were observed with scanning electron microscope(JSM-6400, Jeol, Japan). The obtained results were summarized as follows ; 1. In the group of caries removal with $Carisolv^{TM}$, micro-tensile bonding strength decreased to $75.8{\sim}80$ percent of bur used group. 2. In the group of caries removal with $Carisolv^{TM}$, decreased degree of micro-tensile bonding strength is not so different in 3 kinds of dentin adhesives(p<0.05). 3. In the group of caries removal with $Carisolv^{TM}$, microtensile bonding strength of AB, PB, AQ was 32.6MPa(2.4), 30.1Mpa (1.8), 21.2Mpa(1.9). 4. In the group of caries removal with Bur and $Carisolv^{TM}$, microtensile bonding strength of AQ was significantly lower than that of AB and PB(p<0.01).

  • PDF

A STUDY ON THE RELATIVE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO COMPOMERS (컴포머에 대한 복합레진의 전단결합강도에 관한 연구)

  • Jeong, Song-Ran;Choi, Nam-Ki;Yang, Kyu-Ho;Kim, Seon-Mi;Song, Ho-Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.509-516
    • /
    • 2005
  • For the purpose of comparing the bond strengths of compomers to composite resin, composite Z250, and two polyacid modified composite resin, Dyract AP and F2000, were selected and investigated using universal testing machine for measuring the shear bond strengths. Additionally, the failure modes were examined by observing the fractured surfaces of each specimen. The following results were obtained. 1. The shear bond strength of Dyract AP to Z250 were higher than those of F2000, but there was no statistically significant difference between group 1 and group 3(p>0.05), and groups using fresh compomers showed higher bond strength than those using aged compomers(p<0.05). 2. After measuring the shear bond strength of each group, it was highest in group 5 and was lowest in group 9(p<0.05). 3. Although there was no statistically significant difference, groups treated with thermocycling showed lower bond strengths than those of non-thermocycling groups. 4. Overall compomer/composite resin failures were adhesive. Cohesive failures occurred mainly in groups using bonding agent. Based on these results, the application of a bonding agent on fresh polyacid-modified resin composite increases the bond strength between polyacid-modified resin composite and composite resin. Additionally, the surface of aged polyacid-modified resin composite has to be roughened mechanically and a bonding agent has to be used in combination with composite resin.

  • PDF

THE EFFECTS OF NANO-SIZED HYDROXYAPATITE ON DEMINERALIZATION RESISTANCE AND BONDING STRENGTH IN LIGHT-CURED GLASS IONOMER DENTAL CEMENT (광중합형 글라스아이오노머 시멘트의 탈회 저항성과 결합 강도에 대한 나노미터 입자의 하이드록시아파타이트의 효과)

  • Kim, Ji-Hee;Lee, Yong-Keun;Kim, Seong-Oh;Song, Je-Seon;Choi, Byung-Jai;Choi, Hyung-Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.1
    • /
    • pp.24-34
    • /
    • 2010
  • The aim of this study was to evaluate the effect of incorporated nano HA on the demineralization resistance and bonding strength of LC GIC in comparison with micro HA. Fuji II LC GIC was used as the control group and a base material for experimental groups. Two experimental groups were prepared. One was prepared by adding 15% micro HA to LC GIC by weight ratio (Exp. 1), and the other was prepared by adding 15% nano HA instead (Exp. 2). According to the results, the following conclusions could be obtained. 1. Observing under the CLSM, the control group showed thicker enamel demineralization layer than in the experimental groups, and the Exp. 2 group showed the thinnest demineralization layer. 2. In SEM analysis, there was greater enamel demineralization in the control group. The Exp. 2 group was more resistant to demineralization compared to the Exp. 1 group. 3. The bonding strength was found to be in the increasing order of control, Exp. 1, and Exp. 2 group (p < 0.05). 4. Observing the fractured surfaces under SEM after the bonding strength test was performed, there were bone-like apatite particles formed in HA-added experimental groups, and a greater number of bone-like apatite particles were formed in the Exp. 2 group compared to the Exp. 1 group.

Comparison of flexural strength according to thickness between CAD/CAM denture base resins and conventional denture base resins (CAD/CAM 의치상 레진과 열중합 의치상 레진의 두께에 따른 굴곡 강도 비교)

  • Lee, Dong-Hyung;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.183-195
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the flexural strength of CAD/CAM denture base resins with conventional denture base resins based on their thicknesses. Materials and Methods: For the conventional denture base resins, Lucitone 199® (C-LC) was used. DIOnavi - Denture (P-DO) and DENTCA Denture Base II (P-DC) were taken for the 3D printing denture base resins. For the prepolymerized PMMA resins, Vipi Block Gum (M-VP) and M-IVoBase® CAD (M-IV) were used. The final dimensions of the specimens were 65.0 mm x 12.7 mm x 1.6 mm / 2.0 mm / 2.5 mm. The 3-point bend test was implemented to measure the flexural strength and flexural modulus. Microscopic evaluation of surface of fractured specimen was conducted by using a scanning electron microscope (SEM). After testing the normality of the data, one-way ANOVA was adopted to evaluate the differences among sample groups with a significance level of P = 0.05. The Tukey HSD test was performed for post hoc analysis. Results: Under the same thicknesses, there are significant differences in flexural strength between CAD/CAM denture base resins and conventional denture base resins except for P-DO and C-LC. M-VP showed higher flexural strength than conventional denture base resins, P-DC and M-IV displayed lower flexural strength than conventional denture base resins. Flexural modulus was highest in M-VP, followed by C-LC, P-DO, P-DC, M-IV, significant differences were found between all materials. In the comparison of flexural strength according to thickness, flexural strength of 2.5 mm was significantly higher than that of 1.6 mm in C-LC. Flexural strength of 2.5 mm and 2.0 mm was significantly higher than that of 1.6 mm in P-DC and M-VP. In M-IV, as the thickness increases, significant increase in flexural strength appeared. SEM analysis illustrates different fracture surfaces of the specimens. Conclusion: The flexural strength of different CAD/CAM denture base resins used in this study varied according to the composition and properties of each material. The flexural strength of CAD/CAM denture base resins was higher than the standard suggested by ISO 20795-1:2013 at a thickness of 1.6 mm or more though the thickness decreased. However, for clinical use of dentures with lower thickness, further researches should be done regarding other properties at lower thickness of denture base resins.

The influence of fitness and type of luting agents on bonding strength of fiber-reinforced composite resin posts (섬유강화 복합레진 포스트의 결합강도에 대한 포스트 공간 적합도 및 접착 시멘트의 영향)

  • Kkot-Byeol Bae;Hye-Yoon Jung;Yun-Chan Hwang;Won-Mann Oh;In-Nam Hwang
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.187-194
    • /
    • 2023
  • Purpose: A mismatched size in the post and post space is a common problem during post-fixation. Since this discordance affects the bonding strength of the fiber-reinforced composite resin post (FRC Post), a corresponding luting agent is required. The aim of this study was to evaluate the bonding strength of the FRC post according to the fitness of the fiber post and the type of luting agent. Materials and Methods: Thirty mandibular premolar were endodontic-treated and assigned to two groups according to their prepared post space: Fitting (F) and Mismatching (M). These groups were further classified into three subgroups according to their luting agent: RelyX Unicem (ReX), Luxacore dual (Lux), and Duolink (Duo). A push-out test was performed to measure the push-out bond strengths. The fractured surfaces of each cross-section were then examined, and the fracture modes were classified. Results: In the ReX and Duo subgroups, the F group had a higher mean bond strength; however, the Lux subgroup had no significant difference between the F and M groups. In the analysis of the failure modes, the ReX subgroup had only adhesive failures between the cement and dentin. Conclusion: The result of this study showed that the bond strength of an FRC post was influenced by the type of luting agent and the mismatch between the diameter of the prepared post space and that of the post.