• 제목/요약/키워드: Fracture surface

검색결과 1,865건 처리시간 0.025초

플라즈마 절단 후 제작된 용접부의 기계적 특성

  • 신규인;김형곤;박재학;김성청
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1999년도 춘계 학술논문발표회 논문집
    • /
    • pp.201-206
    • /
    • 1999
  • The influence of surface preparation methods after plasma cutting on the quality of welding zone is investigated. For comparison. three types of welded specimens are prepared by machining(YM), plasma cutting with light regrinding(WPG) and without regrinding(WP), by using three kinds of materials, carbon steel(S45C), stainless steel(Type304) and aluminum alloy (6061-T6). Nondestructive examination, hardness test, microstructure examination, and fracture toughness test are performed. The results show that there is no appreciable reduction in hardness or fracture toughness in WP specimens. But a little difference in heat affected gone size is observed.

  • PDF

STS304 와 SM15C 이종마찰용접재의 변형 및파괴거동 (Behavior of Deformation and Fracture in Friction Welded Materials of STS304 and SM15C)

  • 오환섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.161-166
    • /
    • 1996
  • In this study behavior of deformation and fracture under static tensile load in friction welded dissimilar materials and necking 0phenomenon occuring at tensile yeilding point were shown. Fibrous zone with view of macroscope and dimple pattren with a view of microscope were observed at shear surface.

  • PDF

노치가공법에 의한 기계적 피로결함 시험편 제조 (Fabrication of Mechanical Fatigue Flawed Specimen with Notch Processing)

  • 홍재근;박반욱
    • 연구논문집
    • /
    • 통권32호
    • /
    • pp.55-64
    • /
    • 2002
  • Performance demonstration with real flawed specimens has been strongly required for nondestructive evaluation of safety class components in nuclear power plant. Specimen has been designed to produce mechanical fatigue flaw with tension stress and fatigue flaw has been produced to control stress and cycle, for suitable roughness. Notch condition is considered for control of fracture mode. After seal welding for fracture surface, final welding was performed to complete flaw specimen with GTAW(Gas Tungsten Arc welding) and FCAW(Flux Cored Arc Welding). It was demonstrated flaw size of flawed specimen by radiographic. testing and ultrasonic testing.

  • PDF

A Theological Study on the Karst Water

  • Kim, Choo-Yoon
    • 동굴
    • /
    • 제65호
    • /
    • pp.31-37
    • /
    • 2004
  • Karst water was defined as 'Water which fills the cavities of the earth continuously and is only subject to gravity and hydraulic pressure.' Karst springs are water outlets from karst-hydrologically active cavities in water-soluble rocks, whether they are on the surface or within the earth. Karst springs behave so differently that the general principles of classification for all springs can be applied to them with a few exceptions. Firstly, classification according to the outflow: perennial springs, periodic springs, rhythemically springs, episodically flowing spring. Secondly, classification according to geologic and tectonic conditions: bedding springs, fracture springs, overflow spring, ascending spring.

Sn-3Ag-0.5Cu계 솔더를 이용한 자동차 전장 부품 접합부의 열충격 특성에 관한 연구 (A Study of Thermal Shock Characteristics on the Joints of Automotive Application Component using Sn-3Ag-0.5Cu Solder)

  • 전유재;손선익;김도석;신영의
    • 한국전기전자재료학회논문지
    • /
    • 제23권8호
    • /
    • pp.611-616
    • /
    • 2010
  • This study investigated the characteristics of fracture behavior and mode on solder joints before and after thermal shock test for automotive application component using Sn-3.0Ag-0.5Cu solder, which has a outstanding property as lead-free solder. The shear strength was decreased with thermal cycle number, after 432 cycles of thermal shock test. In addition, fracture mode was verified to ductile, brittle fracture and base materials fracture such as different kind fractured mode using SEM and EDS. Before the thermal shock, the fractured mode was found to typical ductile fracture in solder layer. After thermal shock test, especially, Ag was found on fractured portion as roughest surface. Moreover, it occurred delamination between a PCB and a Cu land. Before thermal shock test, most of fractured mode in solder layer has dimples by ductile fracture. However, after thermal shock test, the fractured mode became a combination of ductile and brittle fracture, and it also could find that the fracture behavior varied including delamination between substrate and Cu land.

경첩 운동이 가능한 외고정장치를 이용한 Pilon골절의 치료 (Treatment of Pilon Fracture using Articulated External Fixator with Hinge)

  • 박인헌;이기병;송경원;이진영;이승용
    • 대한족부족관절학회지
    • /
    • 제1권1호
    • /
    • pp.30-37
    • /
    • 1997
  • Pilon fracture is an intraarticular fracture of distal tibia. It is high energy injury with significantly associated soft tissue damage, bone comminution, and articular surface disruption. Until recently, this treatment has followed the AO principles, Because the risk of complications outweighs potential benefits, the principle of a Pilon fracture treatment are changing. Newer techniques using articulated external fixation minimize disturbance of the soft tissue envelope and have decreased these complications. Series of 5 patients with Pilon fracture were treated by articulated external fixator and followed up more than 12 monthes at the Department of orthopaedic surgery, Kang Dong Sacred Heart Hospital, College of medicine, Hallym University. The results were as follows: 1. The type of fracture were type C2(3 cases),type C3(2 cases) according to AO-$M{\ddot{u}}ller$ classification. 2. The clinical results according to functional criteria by Mast and Teipner were good in 4 cases and poor in 1 case, which is an old fracture. 3. Techniques utilizing articulated external fixator were associated with satisfactory results and appeared to significantly decrease the incidence of soft tissue complication, post-traumatic arthritis, osteoporosis, and fibrosis of ankle joint.

  • PDF

Zircaloy-4 핵연료 피복관의 신파괴인성 시험법 (New Fracture Toughness Test Method of Zircaloy-4 Nuclear Fuel Cladding)

  • 오동준;안상복;홍권표
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.823-832
    • /
    • 2003
  • To define the causes of cladding degradation which can take place during the operation of nuclear power plants, it is required to develop the new fracture toughness test of spent fuel cladding. The fracture toughness of Zircaloy-4 cladding was estimated using the recently developed KAERI embedded Charpy (KEC) specimen. Axially notched KEC specimens cut directly from unirradiated fuel claddings, were tested in a way similar to the standard toughness test method of a Single Edge Bending (SEB) specimen. The results of KEC fracture toughness test at room temperatures were discussed and compared with those of the previous other studies. In conclusions, even though the KEC fracture toughness test of nuclear fuel claddings was easier and more reliable than those developed earlier, the results from the cladding fracture tests were not the material characteristics but the specific fracture parameters which were deeply related to the specification of claddings. In addition, the phenomenon of a thickness yielding was not observed from the fracture surface. It was closely related to the fact that the plane strain condition of the KEC specimen was changed to the plane stress condition during crack advancing. It was also supported by the fractographic evidence that the formation of ductile dimples at the crack initiation became the similar appearance such as a quasi-cleavage after the sufficient crack advancing.

항공기엔진용 1단계 터빈블레이드에 대한 파손 연구 (The Study for Fracture in the First Stage Blade of Aircraft Engine)

  • 윤영웅;박형규;김정
    • 한국항공우주학회지
    • /
    • 제46권10호
    • /
    • pp.806-813
    • /
    • 2018
  • 항공기 엔진을 구성하는 부품 중 하나인 블레이드의 파손에 대해 분석하였다. 블레이드의 파손원인과 그 거동은 다양하지만 크게 일시파단과 피로파손의 두가지 형태로 나뉘어진다. 이 논문에서는 전체 거동은 일시파단으로 진행되고 일부 피로 파손된 블레이드에 대해 기술하였고, 특히 고온에서의 블레이드 손상거동을 분석하므로써 사례의 하나로 제시하고자 한다. 분석한 블레이드는 니켈기 초내열 합금으로 외관, 재질, 미세조직, 고온 크리프 특성, 파단면 형상을 각각의 분석장비를 활용하여 손상원인과 거동을 확인하였고, 원재질에서 재현하였다. 고온에서 니켈 합금은 ${\gamma}^{\prime}$ 형상이 변형되고 조직변형(Alloy Depletion)구간이 관찰되며 재질의 기계적 성질, 물성치 등이 저하되고 연화되어 장시간 운용 시 파손될 수 있다. 니켈합금은 고온특성이 좋으나 함유되는 미량원소에 따라 그 물성치가 다양하므로 니켈합금이라 하여도 그 목적에 맞는 세분화된 소재를 사용해야한다.

치과용 복합레진의 파괴인성에 관한 실험적 연구 (A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL COMPOSITE RESINS)

  • 박진훈;민병순;최호영;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제15권2호
    • /
    • pp.17-33
    • /
    • 1990
  • The purpose of this study was to evaluate the fracture toughness of dental composite resins and to investigate the filler factor affecting the fracture behaviour on which the degree of fracture toughness depends. Six kinds of commercially available composite resin;, including two of each macrofilled, microfilled, and hybrid type were used for this study, The plane strain fracture toughness ($K_{10}$) was determined by three-point bending test using the single edge notch specimen according to the ASTM-E399. The specimens were fabricated with visible light curing or self curing of each composite resin previously inserted into a metal mold, and three-point bending test was conducted with cross-head speed of 0.1mm/min following a day's storage of the specimens in $37^{\circ}C$ distilled water. The filler volume fractions were determined by the standard ashing test according to the ISO-4049. Acoustic Emission(AE), a nondestructive testing method detecting the elastic wave released from the localized sources In material under a certain stress, was detected during three-point bending test and its analyzed data was compared with, canning electron fractographs of each specimen. The results were as follows : 1. The filler content of composite resin material was found to be highest in the hybrid type followed by the macrofilled type, and the microfilled type. 2. It was found that the value of plane strain fracture toughness of composite resin material was in the range from 0.69 MPa$\sqrt{m}$ to 1 46 MPa$\sqrt{m}$ and highest In the macrofilled type followed by the hybrid type, and the microfilled type. 3. The consequence of Acoustic Emission analysis revealed that the plane strain fracture toughness increased according as the count of Acoustic Emission events increased. 4. The higher the plane strain fracture toughness became, the higher degree of surface roughness and irregularity the fractographs demonstrated.

  • PDF

고상확산접합된 Haynes230의 인장성질에 미치는 접합조건의 영향 (Effect of Bonding Condition on the Tensile Properties of Diffusion Bonded Haynes230)

  • 강길모;전애정;김홍규;홍성석;강정윤
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.76-83
    • /
    • 2013
  • This study investigated the effect of bonding temperature and holding time on microstructures and mechanical properties of diffusion bonded joint of Haynes230. The diffusion bonds were performed at the temperature of 950, 1050, and $1150^{\circ}C$ for holding times of 30, 60, 120 and 240 minutes at a pressure of 4MPa under high vacuum condition. The amount of non-bonded area and void observed in the bonded interface decreased with increasing bonding temperature and holding time. Cr-rich precipitates at the linear interface region restrained grain migration at $950^{\circ}C$ and $1050^{\circ}C$. However, the grain migration was observed in spite of short holding time due to the dissolution of precipitates to base metal in the interface region at $1150^{\circ}C$. Three types of the fracture surface were observed after tensile test. The region where the coalesce and migration of grain occurred much showed high fracture load because of base metal fracture whereas the region where those did less due to the precipitates demonstrated low fracture load because of interface fracture. The expected fracture load could be derived with the value of fracture area of base metal ($A_{BF}$) and interface ($A_{IF}$), $Load=201A_{BF}+153A_{IF}$. Based on this equation, strength of base metal and interface fracture were calculated as 201MPa and 153MPa, respectively.