• Title/Summary/Keyword: Fracture property

Search Result 449, Processing Time 0.027 seconds

Toughening Mechanism and Mechanical Property in Thermoplastic Polyolefin-Based Composite Systems (폴리올레핀 복합재료의 파괴인성 메커니즘 및 기계적 특성)

  • Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.123-129
    • /
    • 2007
  • Toughening mechanisms and mechanical properties of three different polyolefin-based composite systems we studied using the tensile, Izod impact and double-notch lout-point-bending (DN-4PB) test, which is well known be an effective tool for probing the failure mechanism (s) around the subcritically propagated crack tip. Microscopy observations such as optical microscopy and transmission electron microscopy were carried out lot the test samples. A detailed investigation clearly shows that a variety of toughening mechanisms, i.e., shear yielding, craze, particle-matrix debonding, rubber particle cavitation, crack deflection and bifurcation, are observed around crack tip damage zone. These toughening mechanisms are responsible for the observed, improved fracture toughness. Based on this study, DN-4PB technique is sufficient to obtain the information needed to describe the fracture behavior of polyolefin-based composites as well as their corresponding toughening mechanisms.

A Study on Fracture Property of Adhesive Interface at Tapered Double Cantilever Beam with Inhomogeneous Composite Material due to Loading Conditions of In-plane and Out-plane (면내 및 면외 하중 조건들에 따른 이종 복합 소재를 가진 경사진 이중외팔보에서의 접착계면의 파괴 특성 연구)

  • Lee, Jung-Ho;Kim, Jae-Won;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2020
  • At the engineering and industrial areas, the lightweight composite material has been substituted with the metals, such as steel at the structural parts. This composite material has been applied by the adhesive bonding method, as well as the joint methods with rivets, welds or bolts and nuts. The study on the strength characteristics of adhesive interface is necessarily required in order to apply the method to composite materials. CFRP specimens as the fiber reinforced plastic composites were manufactured easily and this study was carried out. The static experiments were performed under the loading conditions of in-plane and out-plane shears with the inhomogeneous composite TDCB specimens with CFRP, aluminum (Al6061), and aluminum foam (Al-foam). Through the result of this study, the durability on the inhomogeneous composite structure with adhesive interface was investigated by examining the fracture characteristic and the point in time.

Review of Formability and Forming Property for Stainless Steel (스테인레스 강판의 가공특성과 성형성에 관한 고찰)

  • Kim, Y.S.;Park, J.G.;Ahn, D.C.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.193-205
    • /
    • 2011
  • Because of its rustproof property, stainless steel is widely used in kitchen appliances, building materials, electronics, chemical plants and automobile exhausts. In addition, the utilization of stainless steel for fuel cell application is growing. As the demand for this material increases, it is necessary to study the basic properties of stainless steel such as corrosion resistance, heat transfer, formability, cutting or shearing ability and weldability. In this article, the mechanical properties, formability and press forming performance of stainless steel are reviewed. Since temperature and strain rate affect the press forming performance of STS304(austenitic) stainless steel, the influence of these parameters on the plastic behavior should be investigated. Moreover, measures for the prevention of ridging of STS430(ferritic) and delayed fracture of STS430, which respectively appear during and after press forming, should be considered. Recently, stainless steel sheets with a thickness lower than 0.2 mm have been widely used in applications for mobile phone, digital camera and fuel cell separator. Therefore, there is a growing interest of studying the grain size effect and plasticity at the crystal scale in order to understand the anisotropic behavior and micro forming ability of thin sheets. This review paper was written with the objective of helping engineers and researchers to understand the forming characteristics of stainless steel and to establish standards in plastic forming techniques.

Simulation Analysis on the Property of Crack Propagation and Growth at High Tension Steel Plate (고장력 강판에서의 크랙 전파 및 성장특성에 대한 시뮬레이션 해석)

  • Kang, Byungmok;Kim, Jengo;Lee, Jaehoon;Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.471-477
    • /
    • 2015
  • In this study, the property of crack propagation and growth at high tension steel plate existed with center crack is investigated. The behaviors of fracture mechanics due to existence or not of hole near the center crack in specimen and the length of crack length are investigated when the load is applied at the one side end of specimen. Stress, deformation and deformation of this specimen are evaluated through simulation analysis. By the analysis results at this study, stress intensity factors are obtained. The damage happened at machine or structure with crack or defect can be estimated on the basis of study results.

Microstructure and Strength Property of Liquid Phase Sintered $SiC_f$/SiC Composites (액상소결 $SiC_f$/SiC 복합재료의 미세조직 및 강도특성)

  • Lee, Moon-Hee;Cho, Kyung-Seo;Lee, Sang-Pill;Lee, Jin-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.234-238
    • /
    • 2008
  • The efficiency of fiber reinforced CMC(ceramic matrix composite) on the SiC materials have been investigated, in conjunction with the fabrication process by liquid phase sintering and the characterization. LPS-$SiC_f$/SiC composites was studied with the detailed analysis such as the microstructure, sintered density, flexural strength and fracture behavior. The applicability of carbon interfacial layer has been also investigated in the LPS process. Submicron SiC powder with the constant total amount and composition ratio of $Al_2O_3,\;Y_2O_3$ as sintering additives was used in order to promote the performance of the SiC matrix material. LPS-$SiC_f$/SiC composites were fabricated with hot press under the sintering temperature and applied pressure of $1820^{\circ}C$ and 20MPa for 1hr. The typical property of monolithic LPS-SiC materials was compared with LPS-$SiC_f$/SiC composites.

  • PDF

A basic study on the prediction of local material behavior of composite bone plate for metaphyseal femur fractures (대퇴골 골 간단 부 골절치료용 복합재료 고정판의 국부적 거동 예측을 위한 기초 연구)

  • Yoo, Seong-Hwan;Son, Dae-Sung;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.6-11
    • /
    • 2011
  • This paper presents an estimating method for local property changes and failure prediction of composite materials experiencing large shear deformation during draping process. The bone plate for the metaphyseal femur fracture was chosen to apply the presented method because it has complex geometry. The local property changes due to macro-/microscopic deformations of fabric composites during draping process were evaluated by various tests and the result was applied to predict static/fatigue behaviors of the bone plate. This paper was expected to present useful information on the design of composite structures with complex geometry and their performance evaluation.

Investigation on Mechanical Property and Adhesion of Oxide Films Formed on Ni and Ni-Co Alloy in Room and High Temperature Environments

  • Oka, Yoshinori I.;Watanabe, Hisanobu
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.145-151
    • /
    • 2008
  • Material degradation such as high temperature oxidation of metallic material is a severe problem in energy generation systems or manufacturing industries. The metallic materials are oxidized to form oxide films in high temperature environments. The oxide films act as diffusion barriers of oxygen and metal ions and thereafter decrease oxidation rates of metals. The metal oxidation is, however, accelerated by mechanical fracture and spalling of the oxide films caused by thermal stresses by repetition of temperature change, vibration and by the impact of solid particles. It is therefore very important to investigate mechanical properties and adhesion of oxide films in high temperature environments, as well as the properties in a room temperature environment. The oxidation tests were conducted for Ni and Ni-Co alloy under high temperature corrosive environments. The hardness distributions against the indentation depth from the top surface were examined at room temperature. Dynamic indentation tests were performed on Ni oxide films formed on Ni surfaces at room and high temperature to observe fractures or cracks generated around impact craters. As a result, it was found that the mechanical property as hardness of the oxide films were different between Ni and Ni-Co alloy, and between room and high temperatures, and that the adhesion of Ni oxide films was relatively stronger than that of Co oxide films.

Mechanical Property and Process Variables Optimization of Tube-to-Tube Friction Welding for Steel Pipe with 36 mm External Diameter (외경 36mm 강관의 관대관 마찰용접 특성과 공정 변수 최적화)

  • Kong, Yu-Sik;Park, Young Whan
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.50-56
    • /
    • 2014
  • Friction welding is a very useful joining process to weld metals which have axially symmetric cross section. In this paper, for the friction welding with tube-to-tube shape, the feasibility of industry application was determined using analyzing mechanical properties of weld and optimized welding variables was suggested. In order to accomplish this object, rotating speed, friction heating pressure, and friction heating time were selected as the major process variables and the experiment was performed in three levels of each parameter. Weld characteristic was investigated in terms of weld shape and metal loss, and 7mm of metal loss was regarded as the optimal metal loss. By tensile test, tensile strength and yielding strength was measured and fracture was occurred at base metal. In order to optimize the welding condition, fitness function was defined with respect to metal loss and yielding strength and the fitness values for each welding condition could be calculated in experimental range. Consequently, we set the optimal welding condition as the point which had maximum value of fitness function. As the result of this paper the optimal welding variables could be suggested as rotating speed was 1300 rpm, friction heating pressure was 15 MPa, and friction heating time was 10 sec.

Densification Behavior of Mechanically Alloyed NiAl Powder Compact during Spark-plasma Sintering and its Mechanical Property

  • Kim, Ji-Soon;Jung, Soon-Ho;Jang, Young-Il;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.172-175
    • /
    • 2003
  • Mechanically-alloyed NiAl powder was sintered by Spark-Plasma Sintering (SPS) process. Densification and behavior mechanical property were determined from the experimental results and analysis ,such as changes in linear shrinkage, shrinkage rate, microstructure, and phase during sintering process, Victors hardness, and transver.ie-rupture-strength (TRS). Above 97% relative density was obtained after sintering at 115$0^{\circ}C$ for 5 min. Crystallite size determined by the Scherrer method was approximately 50 nm. From the X-ray diffraction analysis it was confirmed that the sintered bodies were composed mainly of NiAl phase together with Ni$_3$Al phase. Measured Vickers hardness and TRS value were 555$\pm$10 $H_v$ and 1393$\pm$75 MPa , respectively.

Assessment of flexural performance of hybrid fiber reinforced concrete. (하이브리드 섬유보강 콘크리트의 휨성능 평가)

  • Kim, Hag-Youn;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.337-340
    • /
    • 2005
  • In this study, an effect of fiber blending on material property of Hybrid Fiber Reinforced Concrete (HFRC) was evaluated. Also, Compare and evaluates collating and mechanical property by the mixing rate of fiber for HFRC was determine. Modulus of rupture and strength effectiveness of Hybrid Fiber Reinforced Concrete mixed with macro-fiber(steel fiber) and micro-fiber(glass fiber, carbon fiber, cellulose fiber). Test result shows, in the case of mono fiber reinforced concrete. As the steel fiber mixing rate increases to 1.5$\%$, the strength effectiveness promotion rate rises. However, when is 2.0$\%$, strength decreases. In the case of hybrid fiber reinforcement concrete, synergy effect of micro fiber and macro fiber happens and higher Modulus of rupture and strength effectiveness appears than mono-fiber reinforcement concrete. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber + carbon fiber and contributed by steel fiber + glass fiber, steel fiber + celluloid fiber in reinforcement effect in order. And was expose that steel fiber(1.5$\%$) + carbon fiber(0.5$\%$) is most suitable association.

  • PDF