Browse > Article

Toughening Mechanism and Mechanical Property in Thermoplastic Polyolefin-Based Composite Systems  

Weon, Jong-Il (Reliability Assessment Center, Korea Research Institute of Chemical Technology)
Publication Information
Polymer(Korea) / v.31, no.2, 2007 , pp. 123-129 More about this Journal
Abstract
Toughening mechanisms and mechanical properties of three different polyolefin-based composite systems we studied using the tensile, Izod impact and double-notch lout-point-bending (DN-4PB) test, which is well known be an effective tool for probing the failure mechanism (s) around the subcritically propagated crack tip. Microscopy observations such as optical microscopy and transmission electron microscopy were carried out lot the test samples. A detailed investigation clearly shows that a variety of toughening mechanisms, i.e., shear yielding, craze, particle-matrix debonding, rubber particle cavitation, crack deflection and bifurcation, are observed around crack tip damage zone. These toughening mechanisms are responsible for the observed, improved fracture toughness. Based on this study, DN-4PB technique is sufficient to obtain the information needed to describe the fracture behavior of polyolefin-based composites as well as their corresponding toughening mechanisms.
Keywords
polyolefin; toughening mechanism; fracture toughness; shear banding; craze;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 G.-X. Wei and H.-J. Sue, J. Appl. Polym. Sci., 74, 2539 (1999)
2 K. Premphet and P. Horanot, Polymer, 41, 9283 (2000)
3 Z. Bartczak, A. S. Argon, R. E. Cohen, and M. Weinberg, Polymer, 40, 2347 (1999)
4 J. Z. Liang and R. K. Y. Li, J. Appl. Polym. Sci., 77, 409 (2000)
5 Z. Demjen, B. Pukanszky, and N. Jozsef, Composites Part A, 29, 323 (1998)
6 G.-X. Wei and H.-J. Sue, Polym. Eng. Sci., 40, 1979 (2000)
7 G.-X. Wei, H.-J. Sue, J. Chu, C. Huang, and K. Gong, Polymer, 41, 2947 (2000)
8 Y. Kurokawa, H. Yasuda, and A. Oya, J. Mater. Sci. Lett., 15,1481 (1996)
9 A. S. Holik, R. P. Kambour, S. Y. Hobbs, and D. G. Fink, Microstructure Sci., 7, 357 (1979)
10 G.-X. Wei and H.-J. Sue, J. Mat. Sci., 35, 555 (2000)
11 J.-I. Weon, Z.-Y. Xia, and H.-J. Sue, J. Polym. Sci.; Part B: Polym. Phys., 43, 3555 (2005)   DOI   ScienceOn
12 C. A. Wah, L. Choong, and G. S. Neon, Eur. Polym. J., 36, 789 (2000)
13 A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993)
14 W. C. J. Gaymans, C. Westzaan, J. Huetink, and R. J. Gaymans, Polymer, 44, 261 (2003)   DOI   ScienceOn
15 Y. Li, G.-X. Wei, and H.-J. Sue, J. Mater. Sci., 37, 2447 (2002)
16 A. Tabtiang and R. Venables, Eur. Polym. J., 36, 137 (2000)
17 K. Mitsuishi, S. Kodama, and H. Kawasaki, Polym. Eng. Sci., 25, 1069 (1985)
18 R. Rothon, Particulate-fIlled polymer composites, Wiley, New York, NY, 1995
19 J. Lu, G.-X. Wei, H.-J. Sue, and J. Chu, J. Appl. Polym. Sci., 76, 311 (2000)
20 M. Kato, A. Usuki, and A. Okada, J. Appl. Polym. Sci., 66, 1781 (1997)   DOI   ScienceOn
21 H.-J. Sue, Polym. Eng. Sci., 31, 270 (1991)
22 G.-X. Wei, H.-J. Sue, J. Chu, C. Huang, and K. Gong, J. Mater. Sci., 35, 555 (2000)
23 M. Sumita, T. Tsukurmo, K. Miyasaka, and K. Ishikawa, J. Mater. Sci., 18, 1758 (1983)
24 J. Lu, C. K. Y. Li, G.-X. Wei, and H.,-J. Sue, J. Mater. Sci., 35, 271 (2000)
25 H.-J. Sue, J. Mater. Sci., 27, 3098 (1992)
26 M. Sumita, T. Shizurna. K. Miyasaka, and K. Ishikawa, J. Macromol. Sci. Phys.. B22, 601 (1983)
27 H.-J. Sue and A. F. Yee, J. Mater. Sci., 28, 2915 (1993)
28 J. Jancar and A. T. DiBenedetto, Polym. Eng. Sci., 33, 559 (1993)
29 C. Chan, J. Wu, J. Li, and Y. Cheung, Polymer, 43, 2981 (2002)
30 H.-J. Sue and A. F. Yee, J. Mater. Sci., 24, 1447 (1989)
31 A. Usuki, M. Kato, A. Okada, and T. Kurauchi, J. Appl. Polym. Sci., 63, 137 (1997)