• Title/Summary/Keyword: Fractional bandwidth

Search Result 142, Processing Time 0.035 seconds

A design of fractional-N phase lock loop (Fractional-N 방식의 주파수 합성기 설계)

  • Kim, Min-A;Choi, Young-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1558-1563
    • /
    • 2007
  • In this paper, phase-locked loop (PLL) of a combinational architecture consisting of an adaptive bandwidth and fractional-N is presented to improve performances and reduce the order of ${\Delta}{\Sigma}$ modulator while maintaining equivalent or better performance with fast locking. The architecture of adaptive bandwidth PLL was simulated by HSPICE using 0.35m CMOS parameters. The behavioral simulation of the proposed adaptive bandwidth fractional-N PLL with a ${\Delta}{\Sigma}$ modulator was carried out by using MatLab to determine if the architecture could achieve the objectives. The HSPICE simulation showed that this type of PLL was able to fast locking, and reduce fractional spurs about 20dB.

Effective Bandwidth for a Single Server Queueing System with Fractional Brownian Input

  • Kim, Sung-Gon;Nam, Seung-Yeob;Sung, Dan-Keun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.1-8
    • /
    • 2003
  • The traffic patterns of today's IP networks exhibit two important properties: self-similarity and long-range dependence. The fractional Brownian motion is widely used for representing the traffic model with the properties. We consider a single server fluid queueing system with input process of a fractional Brownian motion type. Formulas for effective bandwidth are derived in a single source and multiple source cases.

  • PDF

Design of Microstrip PBG structure and Duplexer using PBG Cell with Stub (스텁을 갖는 PBG 셀로 구현한 마이크로스트립 PBG 구조 및 듀플렉서)

  • Jang, Mi-Young;Kee, Chul-Sik;Park, Ik-Mo;Lim, Han-Jo;Kim, Tae-Il;Lee, Jung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.39-48
    • /
    • 2001
  • We have studied the design of the photonic bandgap (PBG) structure on the microstrip line that can effectively control the fractional bandwidth of the passband formed in the stopband by adding the stub in the cell of the microstrip PBG structure. As the length of the stub increases, the cutoff frequency and the center frequency of the stopband are decreased, while the bandwidth of the stopband is increased. We have also found that the fractional bandwidth of the passband formed in stopband by the introduction of defect decreases as the stub length is increased. These results mean that adding the stub in the normal PBG structure is an effective way to control the fractional bandwidth. As an application example, we have implemented a microwave duplexer using the proposed structure.

  • PDF

N fractional frequency synthesizer for 800 MHz frequency hopping (800 MHz 주파수도약 시스템을 위한 분수분주 방식 주파수 합성기의 설계 및 제작)

  • 박종문;이승대;방성일;진연강
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.526-533
    • /
    • 1996
  • In this paper, the 800 MHz band N fractional frquency synthesizer having 677 channel with 30 kHz channel bandwidth is designed on the based on the theory which is dervied in terms of the relation between reference freqiency and the number of channels, loop bandwidth and acquistion time. The experimental resuls show 10 Hz deviation from the bandwidth and acquisition time. The experimental results show 10 Hz deviation from the bandwidth, the spurious suppression of aroud -45 dBc and the acqusition time of 1.44 ms. The results satisfy the given specification, but don't achieve thebesired spurious -60 dBc suppression. It is found that 500 hop per second will be possible over the range from 800 to 820 MHz.

  • PDF

Bandwidth Efficient Digital Communication with Wavelet Approximations

  • Lo, Chet;Moon, Todd K.
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.97-101
    • /
    • 2002
  • Based on their shift and scale orthogonality properties, scaling and wavelet functions may be used as signaling functions having good frequency localization as determined by the fractional-out-of-band power (FOOBP). In this paper, application of Daubechies' wavelet and scaling functions as baseband signaling functions is described, with a focus on finding discretely realizable pulse-shaping transfer function circuits whose outputs approximate scaling and wavelet functions when driven by more conventional digital signaling waveforms. It is also shown that the inter-symbol interference (ISI) introduced by the approximation has negligible effect on the performance in terms of signal-to-noise ratio (SNR). Moreover, the approximations are often more bandwidth efficient than the original wavelet functions. These waveforms thus illustrate an example solution of a tradeoff between residual ISI and bandwidth efficiency as a signal design problem.

Open-Ended Waveguide Antenna Using a Single Split-Ring Resonator

  • Ju, Young-Rim;Oh, Soon-Soo;Park, Wook-Ki;Park, Hyo-Dal
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.291-294
    • /
    • 2011
  • This letter proposes an open-ended waveguide antenna with a single split-ring resonator. In contrast to the waveguide antennas incorporating multiple rings reported in a previous study, which exhibited narrow bandwidth, the proposed antenna uses only one ring to achieve broader bandwidth while keeping the aperture small. A single ring has a relatively low quality factor compared to multiple rings. The simulated and measured fractional bandwidth was 4.13% and 4.03%, respectively, which is much broader than the fractional bandwidth of about 1% demonstrated in a previous study. This simple technique can be used in many applications that require small apertures including near-field probes and array elements.

Effects of ground size on characteristics of ENG ZOR antennas (접지면 크기가 ENG ZOR 안테나 특성에 미치는 영향)

  • Lee, Seung-Wook;Park, Jae-Hyun;Lee, Jeong-Hae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.8-14
    • /
    • 2008
  • In this paper, the effects of ground size on the characteristics such as input resistance, fractional bandwidth, and radiation efficiency of epsilon negative (ENG) zeroth order resonance (ZOR) antennas were investigated theoratically. Two types of ENG ZOR antennas were studied: mushroom ENG ZOR antenna with via and via-free defected ground structure (DGS) ENG ZOR antenna. It was confirmed that the ground size had more effects on the characteristics of a Via-free ZOR antenna than those of mushroom ZOR antenna with via. The via-free antenna could radiate properly with the required size of ground plane since the size of ground plane should exceed some critical value for DGS to suitably operate. As a height of substrate of mushroom ZOR antenna with via increased, the fractional bandwidth and radiation efficiency were improved. On the other hand, as a height of via-free ZOR antenna increased, the fractional bandwidth and radiation efficiency were degraded. Finally, a via-free ZOR antenna had an advantage of compactness even though its fractional bandwidth is narrow and its radiation efficiency is poor, compared with thoses of mushroom ZOR antenna with via.

Mode Detection and Synchronization for an OFDM-Based Cognitive Radio with Fractional Bandwidth Mode (부분대역모드를 지원하는 OFDM 기반 인지 라디오 시스템에서 모드 검출 및 동기 기법)

  • Won, Jae-Yeon;Kim, Yun-Hee;Hwang, Sung-Hyun;Um, Jung-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1095-1101
    • /
    • 2007
  • For the cognitive radio (CR) systems sharing the spectrum with narrowband primary devices, this paper presents a fractional bandwidth (FBW) mode utilizing a variable portion of the system band to avoid the interference to or from the primary devices. For the method, the preamble and FBW mode detection algorithm are provided to obtain the FBW mode information during the synchronization. Simulation results in wireless regional area network (WRAN) environments reveal that the FBW mode can be detected reliably without any deterioration of the synchronization performance.

T-Shaped DGS for CPW (CPW에 삽입된 T자형 DGS)

  • Kim Hyung-Mi;Lee Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.938-943
    • /
    • 2004
  • In this paper, we propose a T-shaped DGS for CPW and provide the closed-form solutions for power loss rate, and bandwidth of the DGS. The proposed T-shaped DGS structure has a range of capacitance(C) 5.5 times wider than the dumbbell-shaped DGS structure. In addition we also analyze relations between R, L, C values of the DGS equivalent circuit and total loss rate, BW, $\omega_0$ of the DGS.

Performance Enhancement of Fractional Frequency Reuse Using Partially Overlapped Frequency Partition (분할대역 중첩을 통한 부분 주파수 재사용의 성능 향상)

  • Yun, Sang-Seok;Park, Dong-Chan;Kim, Suk-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.687-694
    • /
    • 2012
  • In OFDMA-based cellular system, inter-cell interference (ICI) reduces system capacity by aggravating receiving performance of the users located in edge of the cell. Therefore, to mitigate ICI is very important issue in cellular system. To deal with ICI problem, fractional frequency reuse (FFR) is introduced. FFR is an interference management technique. It separates each cell into inner cell and outer cell. Then, it allocates whole system bandwidth to inner cell and different frequency partition to each sector of outer cell. By doing this, outer cell users can ignore interferences from adjacent cells. So, the receiving performance of the cell edge users can be fairly increased. However, using FFR technique has a fatal side effect. In order to use different frequency partition among three sectors of outer cell, they can use only a third of the whole system bandwidth. Then, the reduction of available bandwidth reduces the system throughput directly. To solve this problem, we propose a new FFR method that allocates partially overlapped frequency partition to each sector of outer cell. And then, we suggest a proper overlapping ratio for practical cellular system.