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Bandwidth Efficient Digital Communication with Wavelet
Approximations

Chet Lo and Todd K. Moon

Abstract: Based on their shift and scale orthogonality proper-
ties, scaling and wavelet functions may be used as signaling func-
tions having good frequency localization as determined by the
fractional-out-of-band power (FOOBP). In this paper, application
of Daubechies’ wavelet and scaling functions as baseband signal-
ing functions is described, with a focus on finding discretely real-
izable pulse-shaping transfer function circuits whose outputs ap-
proximate scaling and wavelet functions when driven by more con-
ventional digital signaling waveforms. It is also shown that the
inter-symbol interference (ISI) introduced by the approximation
has negligible effect on the performance in terms of signal-to-noise
ratio (SNR). Moreover, the approximations are often more band-
width efficient than the original wavelet functions. These wave-
forms thus illustrate an example solution of a tradeoff between
residual ISI and bandwidth efficiency as a signal design problem.

Index Terms: Bandwidth efficient signaling, multiscale signaling,
fractional out of bound power, wavelet.

I. INTRODUCTION

In recent years, an increasing number of applications of
wavelet theory in various areas in digital communication have
been established [1]-[3]. One of these approaches focuses on
the study of wavelet functions themselves as the signaling func-
tions [4]-[6]. Particularly, with their time-frequency localiza-
tion properties, wavelet functions have good potential for pro-
viding bandwidth effective communication [7].

The spectral efficiency of a digital transmission system can be
measured by the fractional-out-of-band power (FOOBP), which
indicates as a function of bandwidth b what fraction of the total
signal power lies outside the bandwidth . Lower FOOBP in-
dicates superior bandwidth efficiency. Following Ziemer’s con-
vention [8], the FOOBP can be computed by the following defi-
nition FOOBP(b) = 1 — 2 [:# G(f)df, where b is the band-
width, G(f) is the power spectral density of the signal of inter-
est, and Pr is the total power of the signal. Quadrature signaling
is used for all the signaling functions in this paper.

Daubechies’ wavelets are orthogonal with respect to inte-
ger shifts, which means that several overlapping Daubechies’
wavelets can be used to carry information through the same
physical channel [9]. The shift orthogonality allows them to be
inter-symbol interference (ISI)-free at the output of an appropri-
ately designed matched filter on the receiving end.

As Fig. 1 demonstrates [6], compared to other traditional sig-
naling functions employed in digital communication, wavelet
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Fig. 1. Comparison of the FOOBP for MSK, QPSK, SFSK, GMSK, ¢4,
¢6,9s, and ¢10.

signaling has significantly better bandwidth efficiency. Fig. 1
shows the comparison of the FOOBP for various scaling func-
tions of Dy, Dg, and Dg, which are Daubechies’ families of
wavelet with difference number of coefficients, with that for
QPSK (square wave), SFSK, GMSK, and MSK. Even setting
aside other potential benefits of wavelets, the bandwidth effi-
ciency of wavelet signaling makes it worth studying.

Because of the bandwidth efficiency of wavelet signaling, we
are motivated to examine means of producing with special cir-
cuitry to shape a time pulse to closely approximate the desirable
characteristics of wavelet waveforms. In particular, we exam-
ine pulse shaping circuits which produce pulses having good
spectral efficiency and shift orthogonality. The resulting shaped
waveforms do not have perfect shift orthogonality, so some mi-
nor ISI is introduced. However, as we show, the probability of
error performance is only negligibly affected.

This paper begins by studying the basic structure and fre-
quency domain properties of high-dimension composite signals
in Section II. Then in Section III, we study the method for
finding the rational transfer functions for pulse shaping. The
penalty introduced by the residue ISI is studied and presented
in Section IV. In Section V, we present FOOBP for examples
from Daubechies’ wavelet approximations compare with that of
original wavelet functions. Section VI presents conclusions and
discussions.

II. HIGH-DIMENSION COMPOSITE SIGNALS

In Daubechies’ construction of wavelets, there are two basic
functions: The wavelet function, ¢, and the scaling function, ¢.
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As scaling functions are orthogonal to wavelet functions on its
scale or shorter scales, and wavelet functions on different scales
are orthogonal to each other. So, we may transmit information
using high-dimension composite signals constructed, in such a
way that wavelets on each scale do not interfere with wavelets
on other scales. For example, we can have composite signal
U(t) with N + 1 scales, such that a single “frame” of the signal
can be represented as

Ut) = E {a¢2_N/2¢(2_Nt)

N 2V-i)_3

+>. 2 %,,-,,2—1/21;,(2—%_;)}, 1)

j=1 =0

where Ej, is the energy per bit, and ag, ay, j; € {—1,1} are the
information bits that are carried with a scaling function ¢ and
by wavelet functions on scale j, respectively. To facilitate our
following discussion, it will be convenient to introduce more
compact notation. Using

2-N24(2-Nt) k=0

e(t) =< 2792927t 1) k=20-D 41, j=1,--- N,
andl =0,---, 29 — 1,
2
and
a¢ k = 0
by=< ayg k=241 i=1,---,N, @3

andl=0,---,20V-9) — 1,

to represent the wavelets and their information carrying-bits on
the different scales, we can rewrite (1) as

2N
Ut)=Ey ) brye(t). @)
k=0

According to Daubechies [9], we know that |¢(2w)|?> +
[P(2w)? = |¢(w)|®. So, the power spectrum of the
high-dimension signal can be expressed as |¢(2Nw)|®> +
Z;-V:l [$(27w)|? = |$(w)|2. That is, this composite signal has
the same spectral performance as ¢(t). Theoretically, we can-
not achieve spectral performance that is superior to single scaled
scaling functions by using high-dimension composite signals.
However, as will be shown in the following, due to imperfect ra-
tional approximation, composite signal approximations can give
us superior bandwidth performance.

III. FREQUENCY DOMAIN APPROXIMATIONS OF
SCALING AND WAVELET FUNCTIONS

We now consider the problem of finding circuits with rational
transfer functions whose output approximates a wavelet function
or a scaling function when driven by some given input functions.
We call these input functions stimulating functions. That is, we
want to find the transfer functions of circuits whose responses
to some stimulating function Sy, (s) and Sy, (s) are the corre-
sponding approximations of scaling function and wavelet func-
tion, respectively, i.e.,

®N(s) = Hyy (8)Sen (5), )
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Fig. 2. The illustration of analog circuit framework to produce (approxi-
mate) scaling function and wavelet function.

Table 1. List of scaling runction and wavelet functions, and execution

parameter.
Func. execution parameter
number|{ approximating | P a B q | p | sumulating func.
51 Pa(t) 50 3 | 3 |[2]3 unit pulse
S2 #6(t) 50 3|3 |2]5 unit pulse
83 #s(t) 50| -3 |3 |[5]8 unit pulse
S4 ¢10(t) 50 | -3 3 [4]7 unit pulse
S5 #6(t/2) 50 | 25| 25 | 4 | 8 | unit sine pulse
w1 Pe(t/2) 50 | 25 | 25 | 6 | 9 | double sine pulse
and

\I’N('s) ~ Hl/JN (S)S¢N (S)a ©)

where ®(s) is the Laplace transform of ¢(t), ¥(s) is the Laplace
transform of (¢), and Hy,, (s) is the transfer function for the
circuit that generates a scaling function, while Hy, (s) is for
the circuit that generates a wavelet function. This concept is
illustrated in Fig. 2. We employ the Second Algorithm of Remes
[10], [11] (Chebyshev approximation) to generate the rational
approximations.

Since wavelets are causal, we can convert the Fourier trans-
form of the scaling function and the wavelet function to their
Laplace transforms, that is

En(s) = Mo(HMo(D) -+ Mol55) -+, (D)
1 2N-1 i s
Un(s) =5 Y ev-1-n(=1)" Fen(3), @®)
n=0
and
1 2N-1
Mo(s) = 3 7; cpe . )

where {c,} are coefficients for different Daubechies’ wavelet
families [9]. Moreover, as wavelet are analytic [6], the approx-
imation can be done along the real axis. We will set the region
of approximation to be (a, 5). Let

= F(s)

Ho(s) = bgs? + bg—1897 1 + -+ b
P apsP + ap_18P~ L+ - tars+1
for a <s< g, (10)

where H g, (s), our desired approximation, has numerator poly-
nomial of degree at most g and denominator polynomial of de-
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Table 2. Rational Chebyshev approximation of scaling and wavelet functions.

_ bgs%tbg—189"14-+bo
H(S) - apsp+ap_lsp—1+...+a0

num: by, bg—1,...,bo

den: ap,0p-1,...,a0

S1 (»=3,9=2)
num: 6.07965E-2, 5.50072E-1, 1.02714
den:  1.80884E-2, 1.77583E-1, 6.70270E-1, 1.00000

S2 (p=5,¢g=2)
num: 1.73485E-1, 7.67364E-1, 1.03427

den:  4.85543E-4, 1.39702E-2, 1.20040E-1, 4.91232E-1, 1.05618, 1.00000

S3 ®w=8,49=5
num:  2.50635E-3, 1.05982E-2, 8.33368E-2, 4.32409E-1, 1.05086, 9.92191E-1
den: 1.67269E-5, 3.98844E-4, 4.50141E-3, 3.16942E-2, 1.52276E-1, 5.08033E-1, 1.14038, 1.56449, 1.00000

4 @p=749=4)
mum:  6.33948E-3, 2.53829E-2, 2.29281E-1, 8.61608E-1, 9.78576E-1
den:  2.13333E-4, 3.98380E-3, 3.21716E-2, 1.54005E-1, 5.00442E-1, 1.12691, 1.57462, 1.00000

85 ®=8,9=4
mum:  8.69278E-3, 2.70141E-2, 2.59978E-1, 1.10364, 1.57048

den: 2.76342E-7, -4.89612E-6, -3.04270E-5, 1.06794E-3, 1.69826E-2, 1.17846E-1, 4.62641E-1, 1.02014, 1.00000

W1 (p=9,g=6) |
num: -1.69629E-4, 1.80456E-3, -1.97358E-2, 7.61421E-2, -3.12574E-1, 9.51355E-10, 1.88255E-11

den: 2.63115E-7, 8.38887E-6, 1.35269E-4, 1.43198E-3, 1.08072E-2, 5.96765E-2, 2.39356E-1, 6.69234E-1, 1.18115, 1.00000
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gree at most p. The function F'(s) to be approximated is either

F(s) = (s H Mo ik a1

for the scaling function, or

2N -1
F(S) 2S¢N(3 Z CN-1-— n

P
e ¥ 11 Mo o)

B (12)
for the wavelet function. P is an approximation design param-
eter, the number of terms we retain in the infinite product of
Mo() Let

Tqp(8) = Hyp(s) — F(s), (13)

and
Tap = argfé(ﬁ | rgp(s) | - (14)

The minimax solution is the choice of b’s and a’s that mini-
mizes rgp. Then, by, by—1, - -,bo and ap,ap_1, -+ ,a1 are the
coefficients we desire.

Due to the properties of the wavelet function and scaling func-
tion, we pick a lowpass signal as the stimulating function for the
lowpass scaling function, and a bandpass signal as the stimulat-
ing function for the bandpass wavelet function.

We consider two sets of designs. In the first set, only the
scaling function is employed as signaling pulse. We use

-8
S ls) = =2, (15)
which is the Laplace transform of unit pulse function s4, (t) =
u(t) — u(t — 1), as the stimulation function. In the second set,
we consider the high-dimension composite signal. Here, we use

w(l+e”?)
52 4+ 2

S¢N (8) = s (16)

the Laplace transform of unit sine pulse function s, (t)
sin(mrt) for 0 < ¢ < 1, as the stimulation function for the scaling
function. For the wavelet function we use

im(l—e=?)
182 + 72

S¢N (3) = 3 %))

the Laplace transform of double sine pulse function sy, (t) =
sin(2nt) for 0 < ¢t < 1, as the stimulating function.

Because (7) and (8) are infinite-order systems, any finite-
order approximation must sacrifice some of the attributes of the
original function. In our investigations, we examined many ap-
proximations using different orders of filters and approximation
ranges, and present here only those which best preserve the or-
thogonality properties.

The transfer functions are numbered and their approximation
parameters are listed in Table 1. S1 to S4 are the examples
for the scaling function approximations from the first set of ex-
periments we mention above. S5 and W1 are the example of
the function pair from the second set of experiments for high-
dimension composite signal.

The main results for this paper are shown in Table 2. The
numbering used in Table 1 appears in small boxes on the top
left corner for each row, with the value of p and ¢ indicating the
order of numerator terms and denominator terms, respectively.

IV. ERROR AT INTEGER SHIFTS

On the receiver side of the communication system, a matched
filter bank is used to detect the transmitted signal. Let us con-
sider the response of the matched filter «y, (¢) to the signal U (#)
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Table 3. Agp and correlations for wavelet approximations.

# | Agp (dB) Correlation
S1 | 2.01181E-2 | 4.15619E-2 -1.47214E-2  7.16069E-4 6.36922E-5 8.12059E-5 8.77103E-5 Rgs1
S2 | 4.22966E-2 | 5.74400E-2  -2.82503E-2  5.98278E-3  -1.88594E-4  3.59533E-5 9.78387E-5 Rgo
S3 | 1.66980E-3 | -1.13414E-2  5.02764E-3  -1.96735E-3  7.03149E-4  -1.34030E-5  5.79867E-5 Rg3
S4 | 2.41648E-2 | -3.88732E-2 2.61170E-2  -1.01236E-2  9.02724E-4 2.42000E-3  -2.80755E-3 | Rga4
S5 1.71747E-2 | 6.60758E-3  -3.42569E-3 9.64710E-4 1.54898E-4 6.69687E-5 8.07632E-5 Rgs
-1.73768E-2  -2.70700E-2  -2.30301E-2  2.24934E-3 2.58523E-4  -9.28162E-5 *
W1 | 1.89750E-2 | 2.08889E-3 1.46137E-2 2.30932E-3 2.98886E-4 6.56378E-5 1.13203E-5 Ry
Note: * is shared between Rg5 and Ry 1.
1 E T T T T
givenin (4), 0~1——\\\\\\\ 4
001 i 3
d,, = | U(t)ys(t)dt
L= [ U oor |
0.0001 ;— ;
25y / b (£)7s (£)dt + / baye(t)ys (£)dt N \ :
k#s le—-05 e 4
(18) 1e-06 __ i
Let
1e-07 L N
Ry‘v{l’k} = Eb Z / bk’)’k (t)")/s (t)dt (19) E Binary antipodal error probability 3
k#£s le-08 [ -~ ---- Binary error probability j
3 with intersymbol interference 3
be the sum of the correlations involving -y, (t) and the other le-09 L2 < . o 4
wavelets in the frame of U(t). The subscript {bx} of R,, ;, , 10 log%

indicates that its value depends on the different combination
of by’s. When all the functions in U(¢) are shift- and scale-
orthogonal among themselves, we have R, By = 0 for all v,,
and the signal is ISI-free.

The rational approximations of the transfer functions we have
presented preclude exact realization of the shift- and scale-
orthogonality properties. Therefore, correlation of the succes-
sively generated signals introduces ISI at the receiver. Without
lost of generosity, we may assume b; = 1. Then, to calculate
the probability of error with the presence of ISI, we consider
all the 22" 1 possible combinations of +1’s the b, can be for
eachof R,, |, ,. We call the set of these possible combinations
{bx} as B. By assuming that the probabilities of the occurrence
of different {b;,} being equal, the probability of error with the
presence of ISI can be derived as follows. If the transmitted bit
energy is Ej, then the received bit energy for function «y,(t) is
Ey(1+ R,, ,,,,) and the probability of error is

2Eb(1 + R’Y..,{bk})

¥ ,

Py, ({bx}) =Q \/

where N, is the noise level. When we sum over all 22" ~1 pos-
sible combinations in B, we have the probability of error with
the presence of ISI, which is given by

PLISD = w3 Pu(itid). @D

{br}eB

The overall probability of error can be obtained by averaging the
above value over all -y, (t),

1
R(ISI) = = > P, (ISD). (22)
Ys

[+]

Fig. 3. Correlation penalty in probability of error performance due to ISI.
The penalty is greatly expanded from results actually obtained for the
purpose of illustration.

A system with ISI requires a higher signal-to-noise-ratio
(SNR) than a system without ISI to achieve an equal probabil-
ity of error. This difference in SNR is defined as correlation
penalty. Fig. 3 illustrates the effect of correlation on the proba-
bility of error (the difference is exaggerated from results actually
obtained for illustration). The correlation penalty at an error of
P, = 1079 is designated as Agg, as shown in the figure. A list
of corresponding correlation penalties for those transfer func-
tions we numbered above can be found in Table 3. We find that
the correlation penalty we have to pay for using wavelet approx-
imations is very small, in all cases less than 0.05 dB.

V. FOOBP OF THE APPROXIMATIONS

While the rational approximations slightly decreases the SNR
performance of the signaling, in general we gain in the FOOBP
performance. We plot the FOOBP of those transfer functions
numbered above along with the FOOBP of the theoretical scal-
ing functions in Figs. 4 and 5. From the plots, we can see that
transfer functions have FOOBP even superior to these original
scaling functions that are being approximated. Fig. 4 presents
FOOBP of scaling functions and their single scale approxima-
tions. We observe that the approximations to the scaling func-
tions roll off faster than the exact scaling functions. As band-
width increases, rational functions, with smoother time response
than wavelets, have lower FOOBP then wavelets.

When we are using composite high-dimensional signals, the
bandwidth performance can be even better. In Table 1, we have
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Fig. 4. FOOBP of scaling functions and their approximations.
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Fig. 5. Comparison between the FOOBP for ¢¢, SSW1, MSK, GMSK,
and SFSK.

S5 approximating ¢g(t/2) and W1 approximating v (£/2). We
know that ¢g(t/2) and 16(t/2) have a combined bandwidth oc-
cupancy as ¢g(t), however, the composite signal SSW1 is more
bandwidth efficient then ¢ (t). Fig. 5 shows the superiority of
the FOOBP of S5W1 compared to that of ¢¢(t), MSK, GMSK,
and SFSK.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, application of wavelet and scaling functions
as signaling functions for digital communication was put forth.
The focus was finding rational approximations of scaling and
wavelet functions for efficient hardware implementation. We
compared the FOOBP of wavelet functions with some com-
mon digital signaling functions and found that particular wavelet
functions are significantly more efficient in terms of bandwidth
efficiency. A minimax approximation algorithm is applied to
find approximate transfer functions at an interval around zero.
The circuits built with these rational approximations are pulse-
shaping filters that when driven by some special stimulation
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functions produce corresponding scaling and wavelet function
pulses. We noticed that the correlation penalties were negligible.
We then studied the FOOBP of the transfer functions, and found
that the transfer functions have even better spectral containment
than the wavelet themselves. Compared with partial response
continuous-phase modulation (CPM), which also uses pulses
with support longer than the signaling interval, wavelet signal-
ing does not require sophisticated detection algorithms such as
trellis search.

The tradeoff between residual ISI and the superior spectral
containment of these waveforms suggests a new criterion for
signal design for digital communications: Design the signal to
minimize a combination of ISI and FOOBP. While not claiming
that the waveforms here optimally solve this problem, the ap-
proximations present a first cut at the solution and suggest that
there may be fruitful continued investigations in this area.
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