• Title/Summary/Keyword: Fractional

Search Result 2,195, Processing Time 0.027 seconds

CERTAIN NEW PATHWAY TYPE FRACTIONAL INTEGRAL INEQUALITIES

  • Choi, Junesang;Agarwal, Praveen
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.455-465
    • /
    • 2014
  • In recent years, diverse inequalities involving a variety of fractional integral operators have been developed by many authors. In this sequel, here, we aim at establishing certain new inequalities involving pathway type fractional integral operator by following the same lines, recently, used by Choi and Agarwal [7]. Relevant connections of the results presented here with those earlier ones are also pointed out.

A NOTE ON LINEAR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.583-590
    • /
    • 2015
  • This paper deals with linear impulsive fractional differential equations involving the Caputo derivative with non-integer order q. We provide exact solutions of linear impulsive fractional differential equations with constant coefficient by mean of the Mittag-Leffler functions. Then we apply the exact solutions to improve impulsive integral inequalities with singularity.

ITERATED LEFT ABSTRACT FRACTIONAL LANDAU INEQUALITIES

  • ANASTASSIOU, GEORGE A.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.559-577
    • /
    • 2020
  • We present uniform and Lp left Caputo-Bochner abstract iterated fractional Landau inequalities over ℝ+. These estimate the size of second and third iterated left abstract fractional derivates of a Banach space valued function over ℝ+. We give an application when the basic fractional order is ${\frac{1}{2}}$.

SOLVING FUZZY FRACTIONAL WAVE EQUATION BY THE VARIATIONAL ITERATION METHOD IN FLUID MECHANICS

  • KHAN, FIRDOUS;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.381-394
    • /
    • 2019
  • In this paper, we are extending fractional partial differential equations to fuzzy fractional partial differential equation under Riemann-Liouville and Caputo fractional derivatives, namely Variational iteration methods, and this method have applied to the fuzzy fractional wave equation with initial conditions as in fuzzy. It is explained by one and two-dimensional wave equations with suitable fuzzy initial conditions.

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.

A GENERALIZED APPROACH OF FRACTIONAL FOURIER TRANSFORM TO STABILITY OF FRACTIONAL DIFFERENTIAL EQUATION

  • Mohanapriya, Arusamy;Sivakumar, Varudaraj;Prakash, Periasamy
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.749-763
    • /
    • 2021
  • This research article deals with the Mittag-Leffler-Hyers-Ulam stability of linear and impulsive fractional order differential equation which involves the Caputo derivative. The application of the generalized fractional Fourier transform method and fixed point theorem, evaluates the existence, uniqueness and stability of solution that are acquired for the proposed non-linear problems on Lizorkin space. Finally, examples are introduced to validate the outcomes of main result.

ANALYSIS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL'S INEQUALITY IN BANACH SPACES

  • KARTHIKEYAN, K.;RAJA, D. SENTHIL;SUNDARARAJAN, P.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.305-316
    • /
    • 2022
  • We study the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach's contraction principle and the Schauder's fixed point theorem. In addition, an example is given to demonstrate the application of our main results.

ON RESULTS OF MIDPOINT-TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL OPERATORS WITH TWICE-DIFFERENTIABLE FUNCTIONS

  • Fatih Hezenci;Huseyin Budak
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.340-358
    • /
    • 2023
  • This article establishes an equality for the case of twice-differentiable convex functions with respect to the conformable fractional integrals. With the help of this identity, we prove sundry midpoint-type inequalities by twice-differentiable convex functions according to conformable fractional integrals. Several important inequalities are obtained by taking advantage of the convexity, the Hölder inequality, and the power mean inequality. Using the specific selection of our results, we obtain several new and well-known results in the literature.

CONTINUATION THEOREM OF FRACTIONAL ORDER EVOLUTIONARY INTEGRAL EQUATIONS

  • El-Sayed, Ahmed M.A.;Aly, Mohamed A.E.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.695-703
    • /
    • 2002
  • The fractional order evolutionary integral equations have been considered by first author in [6], the existence, uniqueness and some other properties of the solution have been proved. Here we study the continuation of the solution and its fractional order derivative. Also we study the generality of this problem and prove that the fractional order diffusion problem, the fractional order wave problem and the initial value problem of the equation of evolution are special cases of it. The abstract diffusion-wave problem will be given also as an application.