• 제목/요약/키워드: FoxO3a

검색결과 29건 처리시간 0.036초

FoxO3a mediates transforming growth factor-β1-induced apoptosis in FaO rat hepatoma cells

  • Kim, Byung-Chul
    • BMB Reports
    • /
    • 제41권10호
    • /
    • pp.728-732
    • /
    • 2008
  • FoxO3a is a member of the forkhead box class O (FoxO) transcription factor family and an important regulator of apoptosis. This work aimed to elucidate the involvement of FoxO3a in transforming growth factor-${\beta}1$(TGF-${\beta}1$)-induced apoptosis in FaO rat hepatoma cells. TGF-${\beta}1$ caused a time-dependent activation of FoxO3a and a subsequent increase in FoxO response-element-containing luciferase reporter activity, which was Akt-sensitive. The FaO cells stably transfected with a wild type FoxO3a were more susceptible to the formation of apoptotic bodies, populations of sub-G1 apoptotic cells, and collapse of the mitochondrial-membrane potential triggered by TGF-${\beta}1$. In contrast, transfection with small-interfering RNA (siRNA) oligonucleotide specific for FoxO3a significantly inhibited caspase activation in FaO cells treated with TGF-${\beta}1$. It thus appears that FoxO3a plays a crucial mediatory role in the TGF-${\beta}1$ signaling pathway leading to apoptosis.

The Porcine FoxO1, FoxO3a and FoxO4 Genes: Cloning, Mapping, Expression and Association Analysis with Meat Production Traits

  • Yu, Jing;Zhou, Quan-Yong;Zhu, Meng-Jin;Li, Chang-Chun;Liu, Bang;Fan, Bin;Zhao, Shu-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.627-632
    • /
    • 2007
  • FoxO1, FoxO3a and FoxO4 belong to the FoxO gene family, which play important roles in the PI3K/PKB pathway. In this study, we cloned the porcine FoxO1, FoxO3a and FoxO4 sequences and assigned them to SSC11p11-15, SSC1p13 and SSC xq13 using somatic cell hybrid panel (SCHP) and radiation hybrid panel (IMpRH). RT-PCR results showed that these three genes are expressed in multiple tissues. Sequencing of PCR products from different breeds identified a synonymous T/C polymorphism in exon 2 of FoxO3a. This FoxO3a single nucleotide polymorphism (SNP) can be detected by AvaII restriction enzyme. The allele frequencies of this SNP were investigated in Dahuabai, Meishan, Tongcheng, Yushan, Large White, and Duroc pigs. Association of the genotypes with growth and carcass traits showed that different genotypes of FoxO3a were associated with carcass length and backfat thickness between 6th and 7th ribs (BTR) and drip loss (p<0.05).

Exploring the Potential of Natural Products as FoxO1 Inhibitors: an In Silico Approach

  • Anugya Gupta;Rajesh Haldhar;Vipul Agarwal;Dharmendra Singh Rajput;Kyung-Soo Chun;Sang Beom Han;Vinit Raj;Sangkil Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.390-398
    • /
    • 2024
  • FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID-3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.

Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging

  • Ham, Hye-Jun;Park, Jeong-Woo;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.265-270
    • /
    • 2019
  • We investigated whether SIRT1 is associated with reactive oxygen species (ROS) accumulation during CK2 downregulation-mediated senescence. SIRT1 overexpression suppressed ROS accumulation, reduced transcription of FoxO3a target genes, and nuclear export and acetylation of FoxO3a, which were induced by CK2 downregulation in HCT116 and MCF-7 cells. Conversely, overexpression of a dominant-negative mutant SIRT1 (H363Y) counteracted decreased ROS levels, increased transcriptional activity of FoxO3a, and increased nuclear import and decreased acetylation of FoxO3a, which were induced by CK2 upregulation. CK2 downregulation destabilized SIRT1 protein via an ubiquitin-proteasome pathway in human cells, whereas CK2 overexpression reduced ubiquitination of SIRT1. Finally, the SIRT1 activator resveratrol attenuated the accumulation of ROS and lipofuscin as well as lifespan shortening, and reduced expression of the DAF-16 target gene sod-3, which were induced by CK2 downregulation in nematodes. Altogether, this study demonstrates that inactivation of the SIRT1-FoxO3a axis, at least in part, is involved in ROS generation during CK2 downregulation-mediated cellular senescence and nematode aging.

전자파에 노출된 생쥐에서 운동량에 따른 뇌의 유전자 변화 (The Gene Expression Level Differences associated with Exercise in the Mouse Brain exposed to Radiofrequency Radiation)

  • 이민선
    • 디지털융복합연구
    • /
    • 제18권1호
    • /
    • pp.241-247
    • /
    • 2020
  • 전자파 노출이 자발운동에 따른 뇌의 유전자 발현에 미치는 영향을 10 주간 4그룹 즉, 정상 그룹, 자발운동 그룹, 전자파 노출 그룹, 전자파 노출 및 자발운동 그룹으로 나누어 조사하였다. 선조체(striata)와 시상하부(hypothalamus)에서 RT-PCR을 수행하였으며, 타이로신수산화효소(TH), FoxO3a, AMPKα, mRNA 발현을 조사하였다. 선조체에서 TH mRNA 발현은 자발운동과 전자파 노출 조건에서 각각 감소하였고, 전자파 노출 및 자발운동 그룹에서 더 많이 감소되었다. 이 결과는 전자파 노출 및 자발운동 그룹에서의 운동량 감소가 선조체에서 도파민이 감소할 수 있음을 시사한다. 선조체에서 FoxO3a mRNA 발현은 자발운동 그룹에서 증가했지만, 전자파 노출 및 자발운동 그룹은 현저히 감소했다. 시상하부에서는 TH mRNA 유전자 발현은 전자파 노출을 받은 자발운동 그룹에서 감소가 유의했으며, FoxO3a mRNA는 발현의 현저한 증가가 있었다. 전자파가 기억력에 미치는 영향도 밝히기 위해 해마에서의 여러 단백질들의 발현을 추후 조사할 것이다.

Low Expression of the FoxO4 Gene may Contribute to the Phenomenon of EMT in Non-small Cell Lung Cancer

  • Xu, Ming-Ming;Mao, Guo-Xin;Liu, Jian;Li, Jian-Chao;Huang, Hua;Liu, Yi-Fei;Liu, Jun-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권9호
    • /
    • pp.4013-4018
    • /
    • 2014
  • Because of its importance in tumor invasion and metastasis, the epithelial-mesenchymal transition (EMT) has become a research focus in the field of cancer. Recently, evidence has been presented that FoxO4 might be involved in EMT. Our study aimed to detect the expression of FoxO4, E-cadherin and vimentin in non-small cell lung cancers (NSCLCs). We also investigated clinical features and their correlations with the markers. In our study, FoxO4, E-cadherin and vimentin were assessed by immunohistochemistry in a tissue microarray (TMA) containing 150 cases of NSCLC. In addition, the expression level of FoxO4 protein was determined by Western blotting. The percentages of FoxO4, E-cadherin and vimentin positive expression in NSCLCs were 42.7%, 38.7% and 55.3%, respectively. Immunoreactivity of FoxO4 was low in NSCLC when compared with paired normal lung tissues. There were significant correlations between FoxO4 and TNM stage (P<0.001), histological differentiation (P=0.004) and lymph node metastasis (P<0.001), but no significant links with age (P=0.323), gender (P=0.410), tumor size (P=0.084), smoking status (P=0.721) and histological type (P=0.281). Our study showed that low expression of FoxO4 correlated with decreased expression of E-cadherin and elevated expression of vimentin. Cox regression analysis indicated FoxO4 to be an independent prognostic factor in NSCLC (P=0.046). These data suggested that FoxO4 might inhibit the process of EMT in NSCLC, and might therefore be a target for therapy.

Molecular Cloning and Expression of Forkhead Transcription Factor O1 Gene from Pig Sus scrofa

  • Pang, Weijun;Sun, Shiduo;Bai, Liang;Yang, Gongshe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권4호
    • /
    • pp.499-509
    • /
    • 2008
  • Foxo1 plays an important role in the integration of hormone-activated signaling pathways with the complex transcriptional cascade that promotes preadipocyte differentiation of clonal cell lines from rodents. We isolated the full-length cDNA of porcine FoxO1 gene using RACE, confirmed by visual Northern blotting. The deduced amino acids indicated 94% and 90% identities with the corresponding human and mice aa. Analysis of the aa sequence, showed that it included a Forkhead domain (aa 167-247), a transmembrane structure domain (aa 90-113), a LXXLL motif (aa 469-473), and 51 Ser, 8 Thr, and 4 Tyr phosphorylation sites, indicating a potential important role for FoxO1 transcriptional activity in vivo. Using the IMpRH panel, we mapped FoxO1 gene to chromosome 11p13. Our data provide basic molecular information useful for the further investigation on the function of FoxO1 gene. Time-course analysis of FoxO1 expressions indicated that levels of mRNA and protein gradually increased from day 0 to 3, and it reached almost maximal level at day 3, then decreased from day 5 to 7 in porcine primary preadipocyte differentiation. After induction by IGF-1, GPDH activity and accumulation of lipid increased, however, expressions of FoxO1 mRNA and protein were inhibited in a dose dependent manner. These results suggest that FoxO1 takes part in porcine preadipocyte differentiation and expressions of FoxO1 were regulated by IGF-1.

Inhibition of melanogenesis by sodium 2-mercaptoethanesulfonate

  • Kim, Jeong-Hwan;Oh, Chang-Taek;Kwon, Tae-Rin;Kim, Jong Hwan;Bak, Dong-Ho;Kim, Hyuk;Park, Won-Seok;Kim, Beom Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권2호
    • /
    • pp.149-156
    • /
    • 2020
  • Sodium 2-mercaptoethanesulfonate (mesna) is a protective agent that is widely used in medicine because of its antioxidant effects. Recently, reactive oxygen species (ROS) were shown to increase pigmentation. Thus, ROS scavengers and inhibitors of ROS production may suppress melanogenesis. Forkhead box-O3a (FoxO3a) is an antimelanogenic factor that mediates ROS-induced skin pigmentation. In this study, we aimed to investigate the whitening effect of mesna and the signaling mechanism mediating this effect. Human melanoma (MNT-1) cells were used in this study. mRNA and protein expression were measured by real-time quantitative PCR and Western blotting analysis to track changes in FoxO3a-related signals induced by mesna. An immunofluorescence assay was performed to determine the nuclear translocation of FoxO3a. When MNT-1 melanoma cells were treated with mesna, melanin production and secretion decreased. These effects were accompanied by increases in FoxO3a activation and nuclear translocation, resulting in downregulation of four master genes of melanogenesis: MITF, TYR, TRP1, and TRP2. We found that mesna, an antioxidant and radical scavenger, suppresses melanin production and may therefore be a useful agent for the clinical treatment of hyperpigmentation disorders.

마우스 C2C12 근관세포에서 AICAR로 유도된 근위축에 미치는 오미자 추출물의 영향 (Ethanol Extract of Schisandra chinensis (Turcz.) Baill. Reduces AICAR-induced Muscle Atrophy in C2C12 Myotubes)

  • 강영순;한민호;박철;홍수현;황혜진;김병우;김철민;최영현
    • 생명과학회지
    • /
    • 제25권3호
    • /
    • pp.293-298
    • /
    • 2015
  • 근위축은 근육 단백질 합성의 저하와 근육 단백질의 분해 증가에 따른 근섬유의 감소에 의한 근육량이 감소되는 현상이다. 오미자(Schisandrae Fructus, fruits of Schisandra chinensis (Turcz.) Baillon)는 오랫동안 전통의학에서 강장제로서 널리 사용되어 왔다. 비록 다양한 질병 연관 오미자의 생리활성 효능이 폭넓게 연구되어져 왔으나 근육 질환 관련 연구는 매우 제한적으로 이루어져 왔다. 본 연구에서는 오미자 에탄올 추출물(SF)이 AMPK 활성인자 AICAR 처리에 의한 C2C12 근관세포의 근위축 모델계를 이용하여 근위축 억제 효능을 가지는지의 여부와 관련 기전의 해석을 시도하였다. AICAR 처리는 근단백질 분해 연관 ubiquitin ligase muscle RING finger-1 (MuRF-1)의 발현을 전사 수준에서 증가시켰고, MuRF-1 조절 전사인자의 하나인 forkhead box O3a (FoxO3a) 단백질의 인산화를 증가시켰으며, 이러한 변화는 근위축과 연관된 C2C12 근관세포의 형태적 변형과 동반된 현상이었다. 그러나 SF의 전처리에 의하여, AICAR에 의하여 유도된 근위축성 형태변화를 억제하였으며, MuRF-1의 발현과 FoxO3a의 활성화를 억제시켰다. 본 연구의 결과는 SF가 AICAR 처리에 의한 C2C12 근관세포의 근위축을 AMPK 및 FoxO3a 신호전달계 조절을 통하여 억제하였음을 보여주는 것으로 오미자는 근기능 향상을 위한 식의 약 소재로서의 개발 가능성이 매우 높음을 시사하여 준다.

C2C12 myotube의 산화적 손상에 대한 혼합 한약재 추출물(HME)의 Akt/FoxO3 신호 조절을 통한 보호 효과 (Protective Effects of Medicinal Herbal Mixture (HME) through Akt/FoxO3 Signal Regulation in Oxidative Damaged C2C12 Myotubes)

  • 김소영;최문열;이은탁;추성태;김미려
    • 대한본초학회지
    • /
    • 제37권4호
    • /
    • pp.31-38
    • /
    • 2022
  • Objectives : In this study, we investigated the synergistic protective effects of medicinal herbal mixture (HME) including Mori Ramulus (MR), Acanthopanacis Cortex (AC), Eucommiae Cortex (EC), and Black soybean (BS) in C2C12 cells, mouse myoblasts. Methods : Effects of HME on cell viability of C2C12 myoblasts were monitored by MTT assay. Anti-atrophic activity of HME was determined in myoblasts and myotubes under oxidative stress by H2O2. C2C12 myoblasts were differentiated into myotubes in a medium containing 2% horse serum for 6 days. After that, we measured that expression of MyoD and myogenine, the myogenic regulatory factors, to identify the mechanism of inhibiting muscle atophy after HME treatment. In addition, suppression of phosphorylation of Akt, FoxO3a and MARF-1, transcription factors of degradation proteins were analyzed via western blotting. Results : As a result of MTT, HME there was no show cytotoxicity up to a concentration of 1 mg/ml. The cytoprotective effects on oxidative stressed myoblast and myotube was better in HME extract than those of MR, AC, EU, and BS, respectively. HME treatment in Myotube induced by oxidative stress after H2O2 treatment increased Myo D, Myogenine activation, and Akt, FoxO3a phosphorylation and decreased expression of MuRF-1. As the results, HME has synergistic effects on protection against proteolysis of C2C12 myotubes through activation of the Akt signaling pathway under oxidative stress. Conclusions : These results suggest that HME may also be useful as a preventing and treating material for skeletal muscle atrophy caused by age-related diseases.