DOI QR코드

DOI QR Code

Protective Effects of Medicinal Herbal Mixture (HME) through Akt/FoxO3 Signal Regulation in Oxidative Damaged C2C12 Myotubes

C2C12 myotube의 산화적 손상에 대한 혼합 한약재 추출물(HME)의 Akt/FoxO3 신호 조절을 통한 보호 효과

  • Kim, So Young (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University) ;
  • Choi, Moon-Yeol (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University) ;
  • Lee, Un Tak (Ebiche co., Ltd.) ;
  • Choo, Sung Tae (Ebiche co., Ltd.) ;
  • Kim, Mi Ryeo (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University)
  • 김소영 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 최문열 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 이은탁 (농업회사법인 (주)이비채) ;
  • 추성태 (농업회사법인 (주)이비채) ;
  • 김미려 (대구한의대학교 한의과대학 본초약리학교실)
  • Received : 2022.06.14
  • Accepted : 2022.07.25
  • Published : 2022.07.30

Abstract

Objectives : In this study, we investigated the synergistic protective effects of medicinal herbal mixture (HME) including Mori Ramulus (MR), Acanthopanacis Cortex (AC), Eucommiae Cortex (EC), and Black soybean (BS) in C2C12 cells, mouse myoblasts. Methods : Effects of HME on cell viability of C2C12 myoblasts were monitored by MTT assay. Anti-atrophic activity of HME was determined in myoblasts and myotubes under oxidative stress by H2O2. C2C12 myoblasts were differentiated into myotubes in a medium containing 2% horse serum for 6 days. After that, we measured that expression of MyoD and myogenine, the myogenic regulatory factors, to identify the mechanism of inhibiting muscle atophy after HME treatment. In addition, suppression of phosphorylation of Akt, FoxO3a and MARF-1, transcription factors of degradation proteins were analyzed via western blotting. Results : As a result of MTT, HME there was no show cytotoxicity up to a concentration of 1 mg/ml. The cytoprotective effects on oxidative stressed myoblast and myotube was better in HME extract than those of MR, AC, EU, and BS, respectively. HME treatment in Myotube induced by oxidative stress after H2O2 treatment increased Myo D, Myogenine activation, and Akt, FoxO3a phosphorylation and decreased expression of MuRF-1. As the results, HME has synergistic effects on protection against proteolysis of C2C12 myotubes through activation of the Akt signaling pathway under oxidative stress. Conclusions : These results suggest that HME may also be useful as a preventing and treating material for skeletal muscle atrophy caused by age-related diseases.

Keywords

Acknowledgement

이 논문은 중소벤처기업부 지역주력산업육성사업(R&D) (No.S2934141)과 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(No. 2021R1A2C201471711).

References

  1. Rosenberg IH. Sarcopenia: origins and clinical relevance. J. Nutr. 1997 ; 127(5) : 990-1. https://doi.org/10.1093/jn/127.5.990S
  2. Dao T, Kirk B, Phu S, Vogrin S, Duque G. Prevalence of sarcopenia and its association with antirheumatic drugs in middle-aged and older adults with rheumatoid arthritis: A systematic review and meta-analysis. Calcif Tissue Int. 2021 ; 109(5) : 475-89. https://doi.org/10.1007/s00223-021-00873-w
  3. Lee RC, Wang ZM, Heymsfield SB. Skeletal muscle mass and aging: Regional and whole-body measurement methods. Can. J. Appl. Physiol. 2001 ; 26 : 102-22. https://doi.org/10.1139/h01-008
  4. Papadopoulou SK. Sarcopenia: A contemporary health problem among older adult populations. Nutrients. 2020 ; 12(5) : 1293. https://doi.org/10.3390/nu12051293
  5. Pereira RA, Cordeiro AC, Avesani CM, Carrero JJ, Lindholm B, Amparo FC, Amodeo C, Cuppari L, Kamimura MA. Sarcopenia in chronic kidney disease on conservative therapy: Prevalence and association with mortality. Nephrol. Dial. Transplant. 2015 ; 30 : 1718-25. https://doi.org/10.1093/ndt/gfv133
  6. Lai S, Muscaritoli M, Andreozzi P, Sgreccia A, De LS, Mazzaferro S, Mitterhofer AP, Pasquali M, Protopapa P, Spagnoli A, Amabile MI, Molfino A. Sarcopenia and cardiovascular risk indices in patients with chronic kidney disease on conservative and replacement therapy. Nutrition. 2019 ; 62 : 108-14. https://doi.org/10.1016/j.nut.2018.12.005
  7. Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia. Int. J. Mol. Sci. 2010 ; 7 : 1509-26. https://doi.org/10.3390/ijms11041509
  8. Adachi T, Togashi H, Suzuki A, Kasai S, Ito J, Sugahara K, Kawata S. NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells. Hepatology. 2005 ; 41 : 1272-81. https://doi.org/10.1002/hep.20719
  9. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. 1997 Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. J Biol Chem. 1997 ; 272 : 217-21. https://doi.org/10.1074/jbc.272.1.217
  10. Scicchitano BM, Pelosi L, Sica G, Musaro A. The physiopathologic role of oxidative stress in skeletal muscle. Mech. Aging Dev. 2018 ; 170 : 37-44. https://doi.org/10.1016/j.mad.2017.08.009
  11. Jang YJ, Leem HH, Jeon YH, Lee DH, Choi SW. Isolation and identification of α-glucosidase inhibitors from morus root bark. J Korean Soc Food Sci Nutr. 2015 ; 44(7) : 1090-9. https://doi.org/10.3746/JKFN.2015.44.7.1090
  12. Hur J. Donguibogam, Dongeuhak Institute. Ryogang Pub. Co., Seoul, Korea. 1994 : 2803-5.
  13. Cui X, Ahn EJ, Kim EJ. Anti-colitis effects of mulberry root bark and mulberry twig extracts in high protein diet fed mice. J East Asian Soc Diet Life. 2018 ; 30(1) : 47-55.
  14. Park JE, Lee GH, Kim JH, Choi SW, Kim EJ. Anti-obesity effect of Ramulus mori extracts and stilbenes in high fat diet-fed C57BL/6J mouse. J Nutr Health. 2020 ; 53(6) : 570-82. https://doi.org/10.4163/jnh.2020.53.6.570
  15. You SH, Jang MR, Kim GH. Antioxidant activity and neuroprotective effect of root bark of Morus alba L. extract against hydrogen peroxide-induced cytotoxicity in PC12 Cells. J Korean Soc Food Sci Nutr. 2018 ; 47(5) : 519-27. https://doi.org/10.3746/jjkfn.2018.47.5.519
  16. Kim SK, Kim YG, Lee MK, Han JS, Lee JH, Lee HY. Comparison of biological activity according to extracting solvents four acanthopanax root bark. Korean J Med Crop Sci. 2000 ; 8 : 21-8.
  17. Park YS. Antioxidant effects and improvement of lipid metabolism of Acanthopanacis cortex water extract in rats fed high fat diet. J East Asian Soc Diet Life. 2010 ; 20(1) : 37-45.
  18. Rho YH, Lee GS, Kim CJ, Jeon BG, Jeong HW. Experimental effects of Acanthopanacis Cortex extract on the immunity, anti-cancer and obesity in mice. J Physiol & Pathol Korean Med. 2005 ; 19(2) : 389-97.
  19. Ko ST, Kim SY, Lim DY. A study on the hypotensive action of acanthopanax extract in rabbit. J Pharm Investig. 1978 ; 8(1) : 106-16.
  20. Seo BI, Jung KY. Easy to understand herbal medicine. 2nd. Gyeongsan ; Daegu haany university publishing department. 2010 : 415-6.
  21. Choi DH, Kim MR, Kim MY, Kim HH, Park SY. Studies on antioxidant, anti-inflammatory and whitening effects of oriental herbal extracts (mix) including Eucommiae cortex. J Soc Cosmet Sci. Korea. 2019 ; 45(1) : 37-47. https://doi.org/10.15230/SCSK.2019.45.1.37
  22. Cho JH, Kim KS, Cha JD, Lee HS, Choi H, Jung HS, Sohn NW, Sohn YJ. Effect of Eucommiae cortex on hind limb muscle atrophy of sciatic nerve transectioned Rats. J Physiol & Pathol Korean Med. 2008 ; 22(6), 1454-61.
  23. Choi HS. The efficacy of Cynomorii herba and Eucommiae cortex on treatment of osteoporosis in ovariectomized rats. Kor. J. Herbology. 2008 ; 23(2) : 19-24.
  24. Widowati W, Prahastuti S, Ekayanti NLW, Munshy UZ, Kusuma HSW, Wibowo S HB, Amalia A, Widodo WS, Rizal R. Anti-inflammation assay of black soybean extract and its compounds on lipopolysaccharide-induced RAW 264.7 cell. J Phys Conf Ser. 2019 ; 1374(1) : 1-10.
  25. Kim SH, Kwon TW, Lee YS, Choung MG, Moon GS. A major antioxidative components and comparison of antioxidative activities in black soybean. Kor J Food Sci Technol. 2005 ; 37(1) : 73-7.
  26. Kim H., Kim JN, Han SN, Nam JH, Na HN, Ha TJ. Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. J.nutres. 2012 ; 32(10) : 770-7.
  27. Yamashita Y, Nakamura A, Nanba F, Saito S, Toda T, Nakagawa J, Ashida H. Black soybean improves vascular function and blood pressure: A randomized, placebo controlled, crossover trial in humans. Nutrients. 2020 ; 12(9) : 1-14.
  28. Barbieri E, Sestili P. Reactive oxygen species in skeletal muscle signaling. J Signal Transduct. 2012 ; doi:10.1155/2012/982794.
  29. Musaro A, Fulle S, Fano G. Oxidative stress and muscle homeostasis. Curr Opin Clin Nutr Metab Care. 2010 ; 13(3) : 236-42. https://doi.org/10.1097/MCO.0b013e3283368188
  30. Powers SK, Talbert EE, Adhihetty PJ. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol. 2011 ; 589(9) : 2129-38. https://doi.org/10.1113/jphysiol.2010.201327
  31. Powers SK, Jackson MJ. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol Rev. 2008 ; 88 : 1243-76. https://doi.org/10.1152/physrev.00031.2007
  32. Siu PM, Wang Y, Always SE. Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes. Life Sci. 2009 ; 84 : 468-81. https://doi.org/10.1016/j.lfs.2009.01.014
  33. Park C, Choi SH, Jeong JW, Han MH, Lee H, Hong SH, Kim GY, Moon SK, Choi YH. Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway. Anim Cells Syst. 2020 ; 24(1) : 60-8. https://doi.org/10.1080/19768354.2019.1706634
  34. Pownall ME, Gustafsson MK, Emerson CPJ. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol. 2002 ; 18: 747-83. https://doi.org/10.1146/annurev.cellbio.18.012502.105758
  35. Ishibashi J, Perry RL, Asakura A, Rudnicki MA. MyoD induces myogenic differentiation through cooperation of its NH2-and COOH-terminal regions. J Cell Biol. 2005 ; 171(3) : 471-82. https://doi.org/10.1083/jcb.200502101
  36. Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. 2012 ; 4(2) : 1-17.
  37. Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR. Activation of protein kinase B β and γ isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B α. Biochem J. 1998 ; 331(1) : 299-308. https://doi.org/10.1042/bj3310299
  38. Bouzakri K, Zachrisson A, Al-Khalili L, Zhang BB, Koistinen HA, Krook A, Zierath JR. siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle. Cell Metab. 2006 ; 4 : 89-96. https://doi.org/10.1016/j.cmet.2006.04.008
  39. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB III, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001 ; 292 : 1728-31. https://doi.org/10.1126/science.292.5522.1728
  40. Sakamoto K, Arnolds DE, Fujii N, Kramer HF, Hirshman MF, Goodyear LJ. Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle. Am J Physiol Endocrinol Metab. 2006 ; 291 : 1031-7. https://doi.org/10.1152/ajpendo.00204.2006
  41. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Yancopoulos Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo Nat. Cell Biol. 2001 ; 3(11) : 1014-19.
  42. Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA: Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci USA. 1980 ; 77 : 1783-86. https://doi.org/10.1073/pnas.77.4.1783
  43. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014 ; 307(6) : 469-84.
  44. Mallinson JE, Constantin TD, Sidaway J, Westwood FR, Greenhaff PL. Blunted Akt/FOXO signalling and activation of genes controlling atrophy and fuel use in statin myopathy. J Physiol. 2009 ; 587(1) : 219-30. https://doi.org/10.1113/jphysiol.2008.164699