• Title/Summary/Keyword: Fourier image

Search Result 415, Processing Time 0.021 seconds

A Study on the Real-time Optical Associative Memory Using Photorefractive Effects in $BaTiO_{3}$ ($BaTiO_{3}$ 의 광굴절 현상을 이용한 실시간 광연상 메모리에 관한 연구)

  • Ihm, J.T.;Oh, C.S.;Kim, S.I.;Park, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.410-413
    • /
    • 1988
  • In this paper, the real-time optical associative memory using multiple hologram which is generated with two angular multiplexed reference beams and Fourier transformed object beam in the $BaTiO_{3}$ crystal based on DFWM mechanism. When one image is recorded in the $BaTiO_{3}$ crystal, complete image can be recalled by 9 % partial input of the stored original image without any additional thresholding and optical feedback process. As an experimental result of multiple Fourier hologram which is recorded with two binary images, OHCHAS and PARKHK, we can obtain complete image recalled by 1/6 partial input of the stored image.

  • PDF

Area storage density of ideal 3-D holographic disk memories (이상적인 디스크형 3차원 홀로그래픽 메모리에서의 면적 저장밀도)

  • 장주석;신동학
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.58-64
    • /
    • 2000
  • Assuming that the performance of holographic storage media is ideal, we estimate the area storage density of disk-type holographic memories, when the method of either angle multiplexing, or rotational multiplexing, or both are used. The area storage density is strongly dependent on the f numbers (ratio of focal length to diameter) of both the Fourier transform lens in the signal arm, denoted by $F/#_2$, and the angle range over which the reference beam is incident (or, the equivalent f number corresponding to the angle range denoted by $F/#_1$). The area storage density is largely independent of the pixel pitch of the spatial light modulator when the Fourier plane holograms are recorded, while it is sensitive to the pixel pitch when the image plane holograms are recorded. In general, to obtain high area storage density, the Fourier or at least near Fourier plane holograms rather than the image plane holograms should be recorded. In addition, when the thickness of the recording materials are less than approximately $500\mu\extrm{m}$, rotational multiplexing gives higher area storage densities than angle multiplexing does. To increase the storage density further, however, it is desirable to use both of the two multiplexing methods in combination.nation.

  • PDF

Suppression of Speckle in ultrasonic image by Phase Filtering (위상필터를 사용한 초음파 영사에서의 반점 제거)

  • Kim, D.;Greenleaf, J.F.;Oh, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.11
    • /
    • pp.5-10
    • /
    • 1990
  • The object detection capabilities of ultrasonic imaging systems are limited by the ability of the detection process to distinguish the resolved object signals from backscattered speckle noise. It has been shown that the phase component of the Fourier transform of the speckle noise is random. Based on this property. we propose a new algorithm for distinguishing between speckle and specular targets. The proposed algorithm is implemented by taking the Fourier transform of the received signal, low-pass filtering the phase, and taking the inverse Fourier transform of the filtered phase to enhance specular reflectors and reduce speckle in the image. Simulations and experiments using phantoms confirm the algorithm yielding significant reduction of speckle noise.

  • PDF

Visual perception of Fourier rainbow holographic display

  • Choo, Hyon-Gon;Chlipala, Maksymilian;Kozacki, Tomasz
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.42-51
    • /
    • 2019
  • The rainbow hologram provides views of reconstruction with rainbow color within a large viewing zone. In our recent paper, a Fourier rainbow holographic display using diffraction grating and a white-light LED source was introduced. In this technique, the rainbow effect is realized by the dispersion of white-light source on diffraction grating, while the slit is implemented numerically by reducing the demands of the space-bandwidth product of the display. This paper presents a novel analysis on the visual perception of the Fourier rainbow holographic display using Wigner distribution. The view-dependent appearance of the image, including multispectral field of view and viewing zone, is investigated considering the observer and the display parameters. The resolution of the holographic view is also investigated. For this, a new quantitative assessment for image blur is introduced using Wigner distribution analysis. The analysis is supported with numerical simulations and experimentally captured optical reconstructions for the holograms of the computer model and real object generated with different slit size, reconstruction distance, and different observation conditions.

Accelerated Split Bregman Method for Image Compressive Sensing Recovery under Sparse Representation

  • Gao, Bin;Lan, Peng;Chen, Xiaoming;Zhang, Li;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2748-2766
    • /
    • 2016
  • Compared with traditional patch-based sparse representation, recent studies have concluded that group-based sparse representation (GSR) can simultaneously enforce the intrinsic local sparsity and nonlocal self-similarity of images within a unified framework. This article investigates an accelerated split Bregman method (SBM) that is based on GSR which exploits image compressive sensing (CS). The computational efficiency of accelerated SBM for the measurement matrix of a partial Fourier matrix can be further improved by the introduction of a fast Fourier transform (FFT) to derive the enhanced algorithm. In addition, we provide convergence analysis for the proposed method. Experimental results demonstrate that accelerated SBM is potentially faster than some existing image CS reconstruction methods.

Improvement of reconstructed image from computer generated psuedo holograms using iterative method

  • Sakanaka, Kouta;Tanaka, Kenichi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.578-582
    • /
    • 2009
  • Computer-Generated Hologram (CGH) is generally made by Fourier Transform. CGH is made by an optical reconstruction. Computer-Generated Pseudo Hologram (CGPH) is made up Complex Hadamard Transform instead of CGH which is made by the Fourier Transform. CGPH differs from CGH in point of view the possibility of optical reconstruction. There is an advantage that it cannot be optical reconstruction, in other word, physical leakage of the confidential information is impossible. In this paper, a binary image was converted in Complex Hadamard Transform, and CGPH was made. Improvement of the reconstructed image from CGPH is done by error diffusion method and iterative method. The result that the reconstructed image is improved is shown.

  • PDF

An Explicit Solution of EM Algorithm in Image Deblurring: Image Restoration without EM iterations (영상흐림보정에서 EM 알고리즘의 일반해: 반복과정을 사용하지 않는 영상복원)

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.409-419
    • /
    • 2009
  • In this article, an explicit solution of the EM algorithm for the image deburring is presented. To obtain the restore image from the strictly iterative EM algorithm is quite time-consumed and impractical in particular when the underlying observed image is not small and the number of iterations required to converge is large. The explicit solution provides a quite reasonable restore image although it exploits the approximation in the outside of the valid area of image, and also allows to obtain the effective EM solutions without iteration process in real-time in practice by using the discrete finite Fourier transformation.

DETECTION OF FRUITS ON NATURAL BACKGROUND

  • Limsiroratana, Somchai;Ikeda, Yoshio;Morio, Yoshinari
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.279-286
    • /
    • 2000
  • The objective of this research is to detect the papaya fruits on tree in an orchard. The detection of papaya on natural background is difficult because colors of fruits and background such as leaves are similarly green. We cannot separate it from leaves by color information. Therefore, this research will use shape information instead. First, we detect an interested object by detecting its boundary using edge detection technique. However, the edge detection will detect every objects boundary in the image. Therefore, shape description technique will be used to describe which one is the interested object boundary. The good shape description should be invariant in scaling, rotating, and translating. The successful concept is to use Fourier series, which is called "Fourier Descriptors". Elliptic Fourier Descriptors can completely represent any shape, which is selected to describe the shape of papaya. From the edge detection image, it takes a long time to match every boundary directly. The pre-processing task will reduce non-papaya edge to speed up matching time. The deformable template is used to optimize the matching. Then, clustering the similar shapes by the distance between each centroid, papaya can be completely detected from the background.

  • PDF

Real-Time Automatic Target Detection in CCD image (CCD 영상에서의 실시간 자동 표적 탐지 알고리즘)

  • 유정재;선선구;박현욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.99-108
    • /
    • 2004
  • In this paper, a new fast detection and clutter rejection method is proposed for CCD-image-based Automatic Target Detection System. For defence application, fast computation is a critical point, thus we concentrated on the ability to detect various targets with simple computation. In training stage, 1D template set is generated by regional vertical projection and K-means clustering, and binary tree structure is adopted to reduce the number of template matching in test stage. We also use adaptive skip-width by Correlation-based Adaptive Predictive Search(CAPS) to further improve the detecting speed. In clutter rejection stage, we obtain Fourier Descriptor coefficients from boundary information, which are useful to rejected clutters.

Suppression of side lobe and grating lobe in ultrasound medical imaging system (의료용 초음파 영상 시스템에서 부엽과 격자엽의 억제)

  • Jeong, Mok Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.525-533
    • /
    • 2022
  • We propose an effective method for suppressing both side and grating lobes by applying 2-dimensional Fourier Transform to the received channel data during the receive focusing process of an ultrasound imaging system. When the signal from the image point is focused, the channel signals have the same DC value across the channels. However, even after echoes from outside an imaging point are focused, they are manifested as having different spatial frequencies depending on their incident angles. Therefore, after the receive focusing delay time is applied, 2-D Fourier Transform is performed on the time-channel data to separate the DC component and other frequency components in the spectral domain, and the weighting value is defined using the ratio of the two values. The side lobe and grating lobe were suppressed by multiplying the ultrasound image by a weighting value. Ultrasound images with a frequency of 5 MHz were simulated in a 64-channel linear array. The grating lobe appearing in the ultrasound image was completely removed by applying the proposed method. In addition, the side lobe was reduced and the lateral resolution was greatly increased. Results of computer simulation on a human organ mimicking image show that the proposed method can aid in better lesion diagnosis by increasing the image contrast.