Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0502

Visual perception of Fourier rainbow holographic display  

Choo, Hyon-Gon (Broadcasting and Media Research Laboratory, Electronics and Telecommunications Research Institute)
Chlipala, Maksymilian (Photonics Engineering Division, Warsaw University of Technology)
Kozacki, Tomasz (Photonics Engineering Division, Warsaw University of Technology)
Publication Information
ETRI Journal / v.41, no.1, 2019 , pp. 42-51 More about this Journal
Abstract
The rainbow hologram provides views of reconstruction with rainbow color within a large viewing zone. In our recent paper, a Fourier rainbow holographic display using diffraction grating and a white-light LED source was introduced. In this technique, the rainbow effect is realized by the dispersion of white-light source on diffraction grating, while the slit is implemented numerically by reducing the demands of the space-bandwidth product of the display. This paper presents a novel analysis on the visual perception of the Fourier rainbow holographic display using Wigner distribution. The view-dependent appearance of the image, including multispectral field of view and viewing zone, is investigated considering the observer and the display parameters. The resolution of the holographic view is also investigated. For this, a new quantitative assessment for image blur is introduced using Wigner distribution analysis. The analysis is supported with numerical simulations and experimentally captured optical reconstructions for the holograms of the computer model and real object generated with different slit size, reconstruction distance, and different observation conditions.
Keywords
hologram; holographic display; rainbow hologram; Wigner distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Pan et al., A review of dynamic holographic three-dimensional display: algorithms, devices, and systems, IEEE Trans. Ind. Inform. 12 (2016), no. 4, 1599-1610.   DOI
2 T. Kozacki et al., Wide angle holographic display system with spatiotemporal multiplexing, Opt. Express 20 (2012), 27473-27481.   DOI
3 J. Hahn et al., Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators, Opt. Express 16 (2008), 2372-2386.
4 J. Son et al., Holographic display based on a spatial DMD array, Opt. Lett. 38 (2013), 3173-3176.   DOI
5 H. Sasaki et al., Large size three-dimensional video by electronic holography using multiple spatial light modulators, Sci. Rep. 4 (2014), 6177:1-6177:8.
6 Y. Lim et al., 360-degree tabletop electronic holographic display, Opt. Express 24 (2016), 24999-25009.   DOI
7 J. Li, Q. Smithwick, and D. Chu, Full bandwidth dynamic coarse integral holographic displays with large field of view using a large resonant scanner and a galvanometer scanner, Opt. Express 26 (2018), 17459-17476.   DOI
8 Y. Takaki and K. Fujii, Viewing-zone scanning holographic display using a MEMS spatial light modulator, Opt. Express 22 (2014), 24713-24721.   DOI
9 T. Inoue and Y. Takaki, Table screen 360-degree holographic display using circular viewing-zone scanning, Opt. Express 23 (2015), 6533-6542.   DOI
10 S. Reichelt et al., Holographic 3-D displays electro-holography within the grasp of commercialization, in Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo (eds), IntechOpen, London, UK, 2010.
11 Y. Sando, D. Barada, and T. Yatagai, Holographic 3D display observable for multiple simultaneous viewers from all horizontal directions by using a time division method, Opt. Lett. 39 (2014), 5555-5557.   DOI
12 Z. Zeng et al., Full-color holographic display with increasedviewing-angle [Invited], Appl. Opt. 56 (2017), F112-F120.   DOI
13 A. Maimone, A. Georgiou, and J. S. Kollin, Holographic neareye displays for virtual and augmented reality, ACM Trans. Graph. 36 (2017), no. 85, 1-16.
14 S. A. Benton and V. M. Bove, Holographic Imaging, John Wiley & Sons, Hoboken, NJ, USA, 2008, 145-172.
15 H. Choo, M. Chlipala, and T. Kozacki, Image blur and visual perception for rainbow holographic display, Proc. SPIE 10679 (2018), 106790S:1-106790S:7.
16 H. Yoshikawa and H. Taniguchi, Computer generated rainbow hologram, Opt. Rev. 6 (1999), 118-123.   DOI
17 H. Yoshikawa and T. Yamaguchi, Computer-generated holograms for 3D display, Chin. Opt. Lett. 7 (2009), 1079-1082.   DOI
18 T. Kozacki, M. Chlipala, and H. Choo, Fourier rainbow holographic display, Opt. Express 26 (2018), 25086-25097.   DOI
19 J. C. Wyant, Image blur for rainbow holograms, Opt. Lett. 1 (1977), 130-132.   DOI
20 M. J. Bastiaans, Wigner distribution function and its application to first-order optics, J. Opt. Soc. Am. 69 (1980), 1710-1716.   DOI
21 X. Li et al., 3D dynamic holographic display by modulating complex amplitude experimentally, Opt. Express 21 (2013), 20577-20587.   DOI
22 T. Kozacki, On resolution and viewing of holographic image generated by 3D holographic display, Opt. Express 18 (2010), 27118-27129.   DOI
23 L. Shi et al., Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphics, ACM Trans. Graph 36 (2017), no. 6, 236:1-236:17.
24 G. Finke, M. Kujawinska, and T. Kozacki, Visual perception in multi SLM holographic displays, Appl. Opt. 54 (2015), 3560-3568.   DOI
25 T. Kozacki and M. Chlipala, Color holographic display with white light LED source and single phase only SLM, Opt. Express 24 (2016), 2189-2199.   DOI
26 R. Cicala, The Camera Versus the Human Eye, PetaPixel, Nov. 17, 2012. https://petapixel.com/2012/11/17/the-camera-versus-thehuman-eye
27 J.-H. Park, Recent progress in computer-generated holography for three-dimensional scenes, J. Inform. Displ. 18 (2017), 1-12.   DOI
28 A. Symeonidou, D. Blinder, and P. Schelkens, Color computergenerated holography for point clouds utilizing the Phong illumination model, Opt. Express 26 (2018), 10282-10298.   DOI
29 T. Kozacki, M. Chlipala, and P. L. Makowski, Color Fourier orthoscopic holography with laser capture and an LED display, Opt. Express 26 (2018), 12144-12158.   DOI