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Abstract 

 

Compared with traditional patch-based sparse representation, recent studies have concluded 

that group-based sparse representation (GSR) can simultaneously enforce the intrinsic local 

sparsity and nonlocal self-similarity of images within a unified framework. This article 

investigates an accelerated split Bregman method (SBM) that is based on GSR which exploits 

image compressive sensing (CS). The computational efficiency of accelerated SBM for the 

measurement matrix of a partial Fourier matrix can be further improved by the introduction of 

a fast Fourier transform (FFT) to derive the enhanced algorithm. In addition, we provide 

convergence analysis for the proposed method. Experimental results demonstrate that 

accelerated SBM is potentially faster than some existing image CS reconstruction methods.  

 

 

Keywords: Compressive sensing, sparse representation, split Bregman method, accelerated 

split Bregman method, image restoration 
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1. Introduction 

Image restoration is a fundamental problem in the field of image processing. The process can 

be formalized as an estimation of the original image  from a corrupted observation : 

   (1) 

where  is a degradation matrix and  is the additive noise vector.  

For model (1), different values of  represent different image restoration problems. In 

particular, when  is a random projection operator, model (1) becomes the famous CS model, 

which has attracted extensive academic attention since several CS-based image systems were 

built in recent years, such as the high speed video camera [1] and compressive sensing 

Magnetic Resonance Imaging (MRI) [2].  

Image CS restoration is a classical linear inverse problem, i.e. the blurred image that is 

observed cannot uniquely and stably determine the sharp image, due to the ill-conditioned 

nature of the degradation operator . It is necessary to incorporate prior enforcing 

regularization on the solution in order to stabilize the restoration. Therefore, image restoration 

is often modeled as follows:  

   (2) 

where  measures the data fidelity between  and , while  represents the 

regularizer. 

 

1.1 Related work 

This subsection presents a brief review of existing methods, from the viewpoint of 

regularization and optimization algorithms. 

Regularization: In the existing literature, various regularized methods have been proposed to 

mitigate the ill-posedness of the primal model. First-order smooth optimization methods can 

be used to solve classic quadratic Tikhonov regularization [3] in a relatively inexpensive way, 

but these methods tend to overly smooth images and often erode strong edges and textural 

details. Total variance regularization [5,6] can effectively suppress noise artefacts and usually 

smears out image details, but it tends to be poor at handling fine structures due to its 

assumption of local smoothness. As an alternative, sparsity-promoting regularization [7,8] 

[24] has been used in the past several years and has achieved strong results for various image 

recovery problems. Researchers have been frequently investigating two class 

sparsity-promoting models: the  norm regularized model and the  norm regularized model. 

Optimization Algorithms: The optimization problem based on  norm regularization is 

combinational NP-hard. Some researchers have addressed this by focusing only on the  norm 

regularized model, which under certain strict conditions, is almost equivalent to the  norm 

regularization model. The optimization problem can then be solved using some well-known 

alternating optimization methods such as the alternating direction method of multipliers 

(ADMM) [4][17] or SBM [14][16]. However, although convergence of these methods is 

guaranteed, the quality of the reconstructed images is often affected since it is hard to satisfy 

the strict conditions in most real scenarios. Meanwhile, some authors have focused on solving 

the  norm regularized model directly and sub-optimally by using greedy algorithms such as 

orthogonal matching pursuit (OMP) [22]. However, greedy algorithms are computationally 
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expensive when high fidelity image restorations are involved.  

Specifically, the authors in [8] have produced encouraging results for image restoration 

using a combination of the alternating optimization method (i.e., SBM) and group sparse 

representation (i.e., GSR), which seems promising and is named GSR-SBM. 

 

1.2 Motivation 

From an algorithm performance perspective, the authors in [8] have ignored the following 

feature of GSR-SBM: while it can achieve high quality image restoration, it tends to require a 

high computation time. In order to apply it to more practical application scenarios which 

require much shorter computation times while maintaining image quality, such as X-ray 

computed tomography (CT) image reconstruction [10], it is necessary that some accelerating 

strategies for GSR-SBM are constructed. 

From a convergence analysis perspective, since the  regularized model in [8] is a 

non-convex non-smooth optimization problem, it is difficult to provide theoretical proof of 

global convergence. Hence, the authors in [8] have only illustrated the convergence ability of 

the algorithm by providing experimental evidence. Although global convergence is true for its 

relaxed convex  norm optimization, it is neither simple nor trivial to prove for  norm 

optimization. However, it is extremely important that detailed proof can be obtained for 

GSR-SBM. 

 

1.3 Contributions and Organization 

In this article, we propose an accelerated split Bregman method based on GSR, which is 

called GSR-ASBM. Compared with GSR-SBM presented in [8], the contributions of this 

article can be summarized as follows: 

1. We identify an accelerated strategy [25] based on GSR-SBM that will reduce the 

number of iterations while only requiring almost the same computational effort for each 

iteration.  

2. We prove that GSR-SBM will converge under mild conditions. 

3. We introduce FFT-based manipulation that can be used for MRI restoration to reduce 

the computational complexity of the leading cost of GSR-SBM from  to 

 per iteration.
1
 

The rest of this paper is organized as follows. In Section 2, we present the  norm based 

CS model. In Section 3, we propose GSB-ASBM to reconstruct the sparse coefficients from 

the measurements. Section 4 provides convergence analysis of the proposed method. Section 5 

presents extensive numerical results that can be used to evaluate the performance of the new 

proposed reconstruction algorithm in comparison with some state-of-the-art algorithms. 

Finally, concluding remarks are provided in Section 6. 

2.  norm based CS model 

Based on a sparse representation, a CS image system is usually formularized as a constrained 

optimization: 

    (3a) 

                                                           
1  denotes the number of rows in measurement matrix . 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016                                        2751 

By careful selection of , (3a) can be alternatively expressed as an equivalent 

unconstrained optimization: 

    (3b) 

where  is the regularized parameter,  is an over-complete directory,  is the sparse coding 

matrix (i.e., most elements in each column of  are zero or close to zero), and  

approximates , which is depicted in Fig. 1. 

 
 Fig. 1. Sparse representation 

3. Compressive Image Reconstruction under Accelerated SBM 

3.1 Optimization for proposed -based minimization 

In this section, we first introduce GSR-SBM, which is verified to be more effective than 

iterative shrinkage/thresholding (IST) [21] and is given below as Algorithm 1.  

 

Algorithm 1. GSR-SBM for -based model 

1 Initialization: set , choose ,  and .  

2 Repeat  

3  ;  

4 ; 

5  

6    

7 Until stopping criterion is satisfied 

 

GSR-SBM can solve problem (3b) using a much easier form, i.e., by iteratively solving 

two easier sub-problems  and . The first sub-problem (step 3) to solve  is the 

classical least square problem while the second sub-problem (step 4) to solve sparse coding 

 is a difficult combinatorial problem, which can be approximately solved using a heuristic 

algorithm such as OMP or a method with a closed-form solution, such as that illustrated in the 

next subsection. After such manipulation, GSR-SBM can produce a dimensionality reduction 
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of the problem (3b), i.e., from  to . 

Although GSR-SBM uses variable splitting (i.e., divide and conquer) to simplify the 

original model, the following distinct points are rarely considered: 1) the least square problem 

in step 3 and the group-based sparse coding in step 4 are particularly expensive 

computationally, which is due to both the iterative nature of most least square gradient 

algorithms and the large memory cost required by sparse coding, 2) the multiplier updating in 

step 5 is simple and has a negligible computational cost. Therefore, we should reinvestigate 

GSR-SBM taking the above considerations into account.  

It should be noted that a well-suited preconditioning matrix can be constructed to modify 

the convergence property of the least square gradient algorithms. However, this option will 

introduce a new computational burden for the matrix products. An alternative option is to 

reduce step 4 to , which can be solved efficiently by 

some well-known  algorithms. Unfortunately, this manipulation of relaxation will reduce the 

PSNR of the resulting CS restoration image.  

Since step 5 of Algorithm 1 is simple and requires negligible computational cost, it can be 

used as a breakthrough point to look for acceleration techniques. There are two reasons that 

such choices can be made: 1) the accelerated strategies do not introduce an additional 

computational burden because they only involve simple operations, such as vector 

addition/subtraction and the matrix-vector product, and 2) a faster convergence rate results in 

less iterations for a given stop criterion. Therefore, the number of function calls for the 

computationally expensive step 3 and step 4 will be decreased, which greatly reduces the 

overall computational cost of Algorithm 1. In this work, the proposed GSR-ASBM can be 

implemented in such a manner as follows: 
 

Algorithm 2. GSR-ASBM for -based model 

1 Initialization: set , choose , , , , and , .  

2 Repeat  

3  ,  

4   

5   

6  

7   

8    

9    

10 Until stopping criterion is satisfied 

Remark 1: Compared with Algorithm 1, there are only two additional computations in 

Algorithm 2: step 7 and step 8, both of which have a common feature, i.e., a negligible 

computation cost. In Algorithm 2, once the accelerated strategy reduces the number of 

iteration number, the number of function calls for step 4 and step 5 will be decreased. Since 

step 4 and step 5 contribute the main computational cost to the whole algorithm, this will 

improve the algorithm significantly. The experimental results in Section 5 support these 

conclusions.  
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3.2 Sub-problem for  

In Step 4 of Algorithm 2, the key components for solving (3b) have the form   

    (4) 

where  is the identity matrix. For CS recovery,  is a random projection matrix that does not 

have a special structure. Thus, it is too expensive to compute the inverse of a square matrix 

. 

For simplicity, gradient-type methods (such as the gradient descent method and the 

preconditioned conjugate gradient method) are the most popular tools [8] for approximating a 

solution of (4). However, gradient-type methods, which belong to the class of approximation 

algorithms, need significantly more iterations to satisfy so-called accuracy conditions. In this 

work, taking into consideration that the measurement matrix  is a partial Fourier transform 

matrix which has important applications for high speed MRI, we adopt the FFT
2
 (Fast Fourier 

Transform) algorithm to solve (4), which has a reasonable computational complexity 

.  

The partial Fourier transform matrix can be represented as , where D and F 

represent the down-sampling matrix and the Fourier transform matrix, respectively. By 

applying  and the FFT to each side of (4), it can be seen to be mathematically 

equivalent to 

    (5) 

where  and  represent the inverse FFT and the transpose of the down-sampled matrix, 

respectively. After a simple manipulation, (5) becomes 

   (6) 

By invoking the inverse FFT, (6) can be formulated as  

    (7) 

where  has a cost of only  since  involves a diagonal matrix, while 

products of  or  have a cost of  (including one FFT and one inverse FFT). 

Thus when computing (7), the principal cost is , which significantly improves the 

efficiency of solving the sub-problem for .
3
 

 

3.3 Sub-problem for  

Based on Step 5 of Algorithm 2, the  sub-problem can be mathematically transformed as 

     (8) 

where . By invoking theorem 1 in [8], (8) can be reduced to  sub-problems： 

   (9) 

which can be independently solved by the orthogonal matching pursuit (OMP) algorithm [22]. 

                                                           
2 Generally, FFT can be adopted for image restoration in two practical application scenarios: one is image 

deblurring with a periodic boundary condition, whose matrix representation is circulant (refer to [11][18]); the 

other is high speed MRI with a partial Fourier transform matrix (refer to [9][19]). 
3 Fig. 7 and Fig. 8 compare the FFT based algorithm and the preconditioned conjugate gradient method. 

http://www.maplesoft.com/support/help/Maple/view.aspx?path=LinearAlgebra/MatrixInverse
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Specifically, batch OMP [23] is a better choice when large numbers of signals are involved. As 

shown in [8], another alternative is hard thresholding pursuit. The closed-form solution of (9) 

is expressed as: 

                      (10) 

where  satisfies  and the element-wise hard thresholding operator is used, given by: 

                      (11) 

3.4 Summary of proposed algorithm 

At this point, all the sub-problems have been solved. The details of the proposed method can 

be summarized as follows: 

 

4. Convergence analysis 

Unlike convex optimization, when non-convex and non-smooth problems are involved, 

convergence of SBM is still generally an issue. From an experimental perspective, empirical 

Table 1. Pseudo-algorithm of the proposed method 

Input: the CS measurements , the projection matrix  

Output: Final restored image  

Initialization: Set a training set of  signals  and initiate , define 

the stopping_rule as the stopping criterion, let fourier_sensing classify the measurement 

matrix .  

While stopping_rule = 0 

             Update approximate restored image: 

                  if   fourier_sensing = 1 then 

update  by (7) 

                  else 

update  by (4) using preconditioned conjugate gradient method [20] 

             Sparse coding stage: 

for   do 

 using (10) 

end for 

             Update multiplier: 

                   

             Acceleration step: 

                    

  

                  Set  

end while 
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evidence shows that GSR-SBM seems to converge from any initial point. Although the 

following theorem does not provide substantial proof of global convergence, it shows that 

GSR-SBM can be used to find a stationary point of the primary problem under mild conditions. 

Although far from satisfactory, this result provides some assurance on the reliability of the 

proposed algorithm. 

Before proceeding to the proof of convergence theorem, we provide a lemma. 

Lemma 1. Let  be an index set such that the th element of  is 0 for all , where 

,  is a vector where the elements with an index in  are 1 and the others 

are 0. Assume that  is a local minimizer of the problem 

                                                   (12a) 

and define the following problem: 

                  (12b) 

then   is a local minimizer of problem (12a) if and only if   is a local minimizer 

of problem (12b). 

Proof: See the proof of Theorem 2.2 in [13].                                                                                 □ 

The following theorem is based on the standard conditions that are often assumed in 

convergence analysis of augmented Lagrangian methods for non-convex optimization 

problems (see [12]). 

Theorem 1.  Let  be any accumulation point of  generated by 

GSR-SBM, assume  

                 (13) 

Then, any accumulation point of   is a KKT point of the problem.  

Proof:  Initially, the update of the multiplier (Step 5 in Algorithm 1) and (13) is used to 

give  

                                                                  (14) 

The solution of  sub-problem (step 3 of Algorithm 1) satisfies the first order stationary 

condition 

              (15) 
Using (14), (15) becomes 

                   (16) 

We then introduce the Lagrange function of problem (12b) 

                (17) 

Thus, the KKT condition of (12b) is  

                  (18) 

For the  sub-problem (step 4 of Algorithm 1), from Lemma 1,  is at least a local minimal of 

(12b), so  is the KKT point of (12b), and satisfies 

                 (19) 

According to (14), (19) becomes 

                        (20) 
Combining (14) (16) and (20), we obtain the system of equations as follows 

                              (21a) 
                        (21b) 

                                                    (21c) 
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Recalling the original problem (3a):  

 

The constraint  can be written as , where  is an index set with  such 

that the jth element of  is 0 for all  with  and  is a vector where the 

elements with an index in  are 1 and the others are 0. Then, the original problem can be 

reformulated into 

              (22) 

It can be easily seen that the Lagrange function of the constrained problem (22) is 

          (23) 

The above equations (21a) (21b) and (21c) are just the KKT conditions of (22). This completes 

the proof.                                                                                                                                         □                                               

The only difference with GSR-ASBM is that it adopts some accelerated strategies, which 

do not really affect the convergence of GSR-SBM. Therefore, GSR-ASBM is also convergent 

once GSR-SBM is convergent. 

5 Experimental Results 

In this section, the proposed GSR-ASBM based CS recovery method was implemented using 

the MATLAB framework. The OMP algorithm [22] was also included in our experimental 

setup. All evaluations were performed using a PC with an Intel(R) Pentium(R) CPU G3250 

3.20GHz processor, 4 GB RAM with MATLAB R2009b. For the experiments, eleven 

well-known images including Barbara, Boat, Cameraman, Head, House, Leaves, Lena, 

Monarch, Parrot and Peppers were used with a size of  pixels, as well as image 

Vessels with a size of  pixels. So that a fair comparison between the competing 

methods could be performed. 

Our proposed method was compared with several competitive CS recovery methods to 

verify the performance of our method, including the total variation (TV) method, the 

BCS-SPL, mutli-hypothesis (MH) method, the split Bregman method (SBM), the group based 

split Bregman method (denoted as GSR-SBM) and the proposed GSR-ASBM. It 

is worth highlighting that GSR-SBM is a well-known image CS method that gives 

state-of-the-art CS results. We have carefully tuned the parameters of each algorithm for 

optimal performance in order to provide a fair and unified framework for comparison. All 

methods are assigned the same convergence criterion, i.e., , 

where  is the iteration number and  are the PSNR values at iteration . 
4
 

The PSNR and FSIM comparison results of recovered images using competing CS recovery 

methods are shown in Table 2 and Table 3, respectively. It can be easily seen that the 

proposed GSR-ASBM method performs much better than TV, BSC-SPL, MH, and SBM for 

all test images and sensing rates and the average PSNR gains of the proposed method relative 

to TV, BSC-SPL, MH, and SBM can be as high as 11 dB, 5.2 dB, 3.7 dB and 1.6 dB 

respectively. Moreover, the average PSNR gain and CPU time of proposed method compared 

with state-of-the-art GSR-SBM are about 0.07 dB and 79.16 seconds (saving about 21% CPU 

                                                           
4 The authors in [8] and [15] have used the iteration number i.e.   as the stop criterion, while we 

have adopted  as this choice is popular to achieve an effective comparison 

between the fast algorithm and the classical algorithm (refer to [29][30]). 
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cost) respectively. It is apparent that the proposed method achieves the best visual quality in 

most cases. 
5
 

 

Table 2. PSNR comparision with various CS recovery methods(Units: dB) .The best and second best 

for each algorithm are indicated by red and blue respectively. 
Subrate Algorithms Barbara Boat Cameraman Head House Leaves Lena Monarch     Parrot  Peppers Vessels Avg. 

20% TV[26] 24.396  26.378  19.479  19.480  19.944  19.658  22.625  26.770  23.582  18.487  14.416  21.383  

 BCS-SPL[27] 24.481  28.335  31.084  25.608  32.986  22.566  29.191  26.836  28.153  29.635  24.876  27.614  

 MH [28] 30.987  30.032  30.803  25.960  33.701  24.927  29.512  27.257  28.686  29.845  26.631  28.940  

 SBM [15] 32.035  32.847  31.794  26.625  35.852  27.014  30.603  28.423  28.664  31.509  29.924  30.481  

 GSR-SBM[8] 34.600  33.460  32.494  27.142  37.216  29.923  31.330  30.597  30.471  32.539  32.013  31.981  

 proposed 34.703  33.548  32.538  27.309  37.189  30.163  31.396  30.866  30.691  32.595  32.224  32.111  

30% TV[26] 26.432  26.800  23.564  22.553  24.266  25.736  21.539  24.994  26.542  21.772  24.069  24.388  

 BCS-SPL[27] 26.370  30.182  33.389  28.112  35.249  24.559  31.452  28.928  31.101  31.474  27.170  29.817  

 MH [28] 32.894  32.367  33.551  28.412  35.837  27.028  31.751  29.457  31.701  31.474  30.279  31.341  

 SBM [15] 34.629  36.263  34.383  29.235  38.257  30.858  33.122  31.491  32.438  31.502  34.794  33.361  

 GSR-SBM[8] 37.055  36.687  35.076  29.824  39.368  33.953  33.949  34.187  33.629  35.120  36.717  35.051  

 proposed 37.065  36.643  35.117  29.927  39.262  34.104  33.957  34.366  33.766  35.166  36.810  35.108  
40% TV[26] 24.715  32.909  25.772  29.325  27.365  27.550  22.252  22.474  24.728  22.548  24.417  25.823  

 BCS-SPL[27] 28.002  31.748  35.076  29.689  36.574  26.156  33.521  30.630  33.362  32.994  29.700  31.587  

 MH [28] 35.154  34.219  35.221  29.415  37.180  29.770  33.926  31.210  33.362  33.315  32.795  33.233  

 SBM [15] 37.051  38.920  36.723  30.844  40.100  34.315  35.777  34.103  34.746  36.553  38.124  36.114  

 GSR-SBM[8] 39.022  39.130  37.325  31.420  40.842  37.104  36.601  36.794  36.169  37.068  40.461  37.449  

 proposed 38.984  39.053  37.388  31.470  40.728  37.208  36.660  36.810  36.189  37.060  40.558  37.464  

 

Table 3. FSIM comparision with various CS recovery methods 
Subrate Algorithms Barbara Boat Cameraman Head House Leaves Lena Monarch     Parrot  Peppers Vessels Avg. 

20% TV[26] 0.820 0.886 0.854 0.884 0.915 0.830 0.894 0.898 0.904 0.904 0.824 0.874 

 BCS-SPL[27] 0.856 0.886 0.851 0.919 0.926 0.779 0.924 0.867 0.940 0.917 0.872 0.885 

 MH [28] 0.942 0.917 0.853 0.916 0.936 0.851 0.931 0.874 0.940 0.920 0.905 0.908 

 SBM [15] 0.951 0.950 0.874 0.925 0.954 0.907 0.943 0.894 0.932 0.941 0.950 0.929 

 GSR-SBM[8] 0.969 0.955 0.890 0.932 0.965 0.952 0.953 0.936 0.953 0.952 0.965 0.948 

 proposed 0.969 0.956 0.893 0.933 0.964 0.954 0.954 0.940 0.953 0.952 0.966 0.949 

30% TV[26] 0.872 0.925 0.903 0.927 0.947 0.892 0.935 0.935 0.942 0.940 0.882 0.918 

 BCS-SPL[27] 0.889 0.915 0.893 0.943 0.952 0.823 0.948 0.898 0.956 0.936 0.906 0.914 

 MH [28] 0.958 0.943 0.897 0.945 0.957 0.887 0.952 0.905 0.956 0.936 0.946 0.935 

 SBM [15] 0.972 0.973 0.917 0.953 0.973 0.949 0.964 0.932 0.961 0.938 0.978 0.955 
 GSR-SBM[8] 0.981 0.976 0.930 0.956 0.978 0.975 0.971 0.963 0.966 0.967 0.985 0.968 

 proposed 0.981 0.975 0.932 0.956 0.978 0.976 0.971 0.964 0.966 0.967 0.986 0.968 

40% TV[26] 0.913 0.952 0.938 0.954 0.964 0.932 0.953 0.959 0.960 0.961 0.924 0.946 

 BCS-SPL[27] 0.917 0.936 0.916 0.959 0.963 0.859 0.964 0.920 0.967 0.949 0.939 0.935 

 MH [28] 0.972 0.961 0.913 0.960 0.967 0.924 0.967 0.927 0.967 0.953 0.965 0.952 

 SBM [15] 0.982 0.984 0.940 0.970 0.982 0.972 0.978 0.955 0.974 0.974 0.988 0.973 

 GSR-SBM[8] 0.987 0.985 0.951 0.972 0.985 0.985 0.981 0.976 0.977 0.976 0.993 0.979 

 proposed 0.987 0.985 0.952 0.972 0.984 0.986 0.981 0.976 0.977 0.977 0.993 0.979 

Fig. 2 and Fig. 3 are plotted based on the Leaves and Vessels images with a subrate of 30% 

for a visible comparison between SBM, GSR-SBM and GSR-ASBM. These graphs show that 

GSR-ASBM is more efficient and effective than SBM and GSR-SBM.  
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Fig. 2. Comparision of key competing methods for gray image Leaves with subrate 30%. 

 

                                                           
5 For Boat and House images, GSR-SBM achieves the best PSNR but our proposed algorithm obtains a comparable 

PSNR and saves a lot of computing time. 
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Fig. 3. Comparision of key competing methods for gray image Vessels with subrate 30%. 

 

 

The visual quality of competing algorithms and some visual results for the recovered 

images using different methods will now be illustrated in Fig. 4-Fig. 7. From these figures, it 

can be observed that GSR-ASBM shows better visual results than other competing methods.  

 

 

(a) PSNR = 21.7403 dB,  CPU time = 1 s (b) PSNR = 24.7797 dB,  CPU time = 2.8438 s (c) PSNR = 25.627 dB,  CPU time = 6.25 s 

(d) PSNR = 30.467 dB,  CPU time = 220.7705 s (e) PSNR = 32.0262 dB,  CPU time = 236.625 s (f) PSNR = 32.185 dB,  CPU time = 170.3594 s

 
Fig. 4. Restruction of Vessels image with subrate 20%, (a)-(f) are TV, BCS-SPL, MH, SBM, 

GSR-SBM and the proposed GSR-ASBM repectively. 
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(a) PSNR = 26.5418 dB,  CPU time = 2.4688 s (b) PSNR = 31.1015 dB,  CPU time = 20.1875 s (c) PSNR = 31.7009 dB,  CPU time = 39.5625 s 

(d) PSNR = 32.4381 dB,  CPU time = 127.9326 s (e) PSNR = 33.6287 dB,  CPU time = 479.1094 s (f) PSNR = 33.7659 dB,  CPU time = 389.2813 s

 
Fig. 5. Restruction of Parrots image with subrate 30%, (a)-(f) are TV, BCS-SPL, MH, SBM, 

GSR-SBM and the proposed GSR-ASBM repectively. 

 

 

 

(a) PSNR = 27.55 dB,  CPU time = 2.5781 s (b) PSNR = 26.1564 dB,  CPU time = 6.7656 s (c) PSNR = 29.7704 dB,  CPU time = 74.2031 s 

(d) PSNR = 34.3152 dB,  CPU time = 517.4831 s (e) PSNR = 37.1036 dB,  CPU time = 460.625 s (f) PSNR = 37.208 dB,  CPU time = 360.9375 s

 

Fig. 6. Restruction of Leaves image with subrate 40%, (a)-(f) are TV, BCS-SPL, MH, SBM, 

GSR-SBM and the proposed GSR-ASBM repectively. 
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(a) PSNR = 19.4795 dB,  CPU time = 2.6719 s (b) PSNR = 31.084 dB,  CPU time = 23.375 s (c) PSNR = 30.8034 dB,  CPU time = 48.1719 s 

(d) PSNR = 31.7945 dB,  CPU time = 168.288 s (e) PSNR = 32.4943 dB,  CPU time = 322.8594 s (f) PSNR = 32.5384 dB,  CPU time = 253.8906 s

 

Fig. 7. Restruction of Head image with subrate 20%, (a)-(f) are  TV, BCS-SPL, MH, SBM,  

GSR-SBM and the proposed GSR-ASBM repectively. 

 

 

 

(a) PSNR = 19.4803 dB,  CPU time = 2.375 s (b) PSNR = 25.6078 dB,  CPU time = 18.7969 s (c) PSNR = 25.9603 dB,  CPU time = 44.9219 s 

(d) PSNR = 26.6253 dB,  CPU time = 147.8116 s (e) PSNR = 27.1418 dB,  CPU time = 343.25 s (f) PSNR = 27.3094 dB,  CPU time = 298.4688 s

 

Fig. 8. Restruction of Cameraman image with subrate 20%, (a)-(f) are TV, BCS-SPL, MH, SBM,  

GSR-SBM and the proposed GSR-ASBM repectively. 
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(a) PSNR = 22.2524 dB,  CPU time = 2.8281 s (b) PSNR = 33.5207 dB,  CPU time = 10.2188 s (c) PSNR = 33.9255 dB,  CPU time = 33.7969 s 

(d) PSNR = 35.7765 dB,  CPU time = 224.5617 s (e) PSNR = 36.6006 dB,  CPU time = 320.1875 s (f) PSNR = 36.6596 dB,  CPU time = 277.4688 s

 

Fig. 9. Restruction of Lena image with subrate 40%, (a)-(f) are TV, BCS-SPL, MH, SBM,  

GSR-SBM and the proposed GSR-ASBM repectively. 

 

 

(a) PSNR = 22.474 dB,  CPU time = 2.0156 s (b) PSNR = 30.6302 dB,  CPU time = 9.7813 s (c) PSNR = 31.21 dB,  CPU time = 33.2656 s 

(d) PSNR = 34.103 dB,  CPU time = 345.6029 s (e) PSNR = 36.7937 dB,  CPU time = 455.6094 s (f) PSNR = 36.8098 dB,  CPU time = 321.9688 s

 

Fig. 10. Restruction of Monarch image with subrate 40%, (a)-(f) are TV, BCS-SPL, MH, SBM,  

GSR-SBM and the proposed GSR-ASBM repectively. 

 

 

For all the above figures, it has been considered that GSR-SBM is using the preconditioned 

conjugate method (PCG) to calculate equation (4). In the following simulations, we will 

consider a more realistic image restoration environment where  is a partial Fourier transform 

matrix. The difference between GSR-SBM using FFT and GSR-SBM using PCG is shown in 

Fig. 11 and Fig. 12. 
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Fig. 11. The comparisons of FFT based algorithm and PCG based algorithm used in GSR-SBM  for 

gray image Head with subrate 20% under PSNR vs iteration number. 
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Fig. 12. The comparisons of FFT based algorithm and PCG based algorithm used in GSR-SBM  for 

gray image Head with subrate 20% under CPU time vs iteration number. 

 

 

As indicated in Fig.11, the FFT-based algorithm and the PCG-based algorithm both 

achieve the same performance in terms of PSNR, while Fig.12 depicts that PCG requires a 

much higher computational time than FFT for each iteration. This is the main reason why FFT 

has been adopted for our proposed GSR-ASBM method. 

The final test is on the sensitivity of parameters  and . Different values of  were chosen 

in the interval [0.0005, 0.02] and different values of  were chosen in the interval [0.002, 2]. 

More specifically,  was firstly fixed and the sensitivity results on  were obtained, and then 

 was fixed and the sensitivity results on  were obtained, which are depicted by Fig. 13 and 

Fig. 14 respectively. Fig. 15 depicts the sensitivity test on both parameters  and . 
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Fig. 13. Sensitivity test on the parameter on . 
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Fig. 14. Sensitivity test on the parameter on . 
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Fig. 15. Sensitivity test on the parameter both on  and . 

 

By combining the results shown in Fig. 13-15, it is apparent that our proposed algorithm 

will have the best performance when  is around 0.002 and  is around 0.08. 
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6. Conclusion 

In this paper, we have proposed a new approach for compressive sensing based on an 

accelerated split Bregman method and a  model. Compared with the classical split Bregman 

method, the proposed accelerated split Bregman method can significantly improve the 

convergence rate. We prove the convergence of the proposed method. Alternatively, when the 

measurement matrix of the partial Fourier transform is involved and is applied in high speed 

MRI, FFT and the inverse FFT can be used to derive a faster algorithm. Simulation results 

validate that the proposed approach is favorable in terms of both subjective and objective 

qualities. 
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