• Title/Summary/Keyword: Fourier Transform Spectroscopy

Search Result 1,031, Processing Time 0.027 seconds

Degree of Conversion and Polymerization Shrinkage of Low and High Viscosity Bulk-Fill Giomer-based and Resin-based composites (저점도 및 고점도 Bulk-fill Giomer 복합레진과 Bulk-fill 복합레진의 전환율과 중합수축)

  • Kim, Heera;Lee, Jaesik;Kim, Hyunjung;Kwon, Taeyub;Nam, Soonhyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • The aim of this study was to compare the degree of conversion and polymerization shrinkage of low and high viscosity bulk-fill giomer-based and resin-based composites. Two bulk-fill giomer (Beautifil Bulk Restorative (BBR), Beautifil Bulk Flowable (BBF)), two bulk-fill (Tetric N-Ceram Bulk-fill (TBF), SureFil SDR flow (SDR)) and two conventional resin composites (Tetric N-Ceram (TN), Tetric N-flow (TF)) were selected for this study. The degree of conversion was measured by using Fourier transform infrared spectroscopy. Polymerization shrinkage was measured with the linometer. For all depth, BBR had the lowest degree of conversion and SDR had the highest. At 4 mm, the degree of conversion of low and high viscosity bulk-fill giomer resin composites was lower than that of bulk-fill resin composites (p < 0.05). At the depth between 2 mm and 4 mm, there were significant difference with TBF, TN and TF (p < 0.05), while no significant difference in the degree of conversion was measured for BBR, BBF and SDR. Polymerization shrinkage of six resin composites decreased in the following order: TF > SDR > BBF > TBF > TN and BBR (p < 0.05). Polymerization shrinkage of bulk-fill giomer resin composites was lower than that of bulk-fill resin composites (p < 0.05). From this study, it is found that the bulk-fill giomer resin composites and TBF were not sufficiently cured in 4 mm depth. The degree of conversion of low and high viscosity bulk-fill giomer resin composites was significantly lower than bulk-fill resin composites in both 2 mm and 4 mm depths. Therefore, such features of bulk-fill giomer resin composites should be carefully considered in clinical application.

A Study on the Agglomeration of BaTiO3 Nanoparticles with Differential Synthesis Route (나노입자 합성방법에 따른 타이타늄산바륨 나노입자뭉침 현상 연구)

  • Han, W.-J.;Yoo, B.-Y.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.33-39
    • /
    • 2015
  • $BaTiO_3$ is typical ferromagnetic materials with dielectric constant of above 200. $BaTiO_3$ nanoparticles applications are available for multiple purposes such as nanocapacitors, ferroelectric random access memories, and so on. Applications are is diverse from the dispersion of nanoparticles depending on the route of synthesis. In this study, $BaTiO_3$ nanoparticles were synthesized by two different methods such as oxalate method and sol-gel process (ambient condition sol method). Particle size and dispersion condition were studied according to the preparation method and capping agent. Poly vinyl pyrrolidone (PVP) was used as a capping agent in oxalate method and tetrabutylammonium hydroxide (TBAH) used as a capping agent in sol-gel process each. Cubic crystal structure of $BaTiO_3$ phase could be confirmed by X-ray diffraction analysis. Fourier transform-infrared spectroscopy was employed for the confirmation of the capping agent and $BaTiO_3$ nanoparticles. The particle size and distribution analysis was also performed by particles size analyzer and scanning electron microscope.

Preparation of Isophorone Diisocyanate-loaded Microcapsules and Their Application to Self-healing Protective Coating (Isophorone Diisocyanate 함유 마이크로캡슐의 제조와 자기치유형 보호코팅재에의 응용)

  • Lim, Ye-Ji;Song, Young-Kyu;Kim, Dong-Min;Chung, Chan-Moon
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.56-63
    • /
    • 2015
  • The object of this study is to prepare microcapsules containing a diisocyanate compound, apply them to self-healing protective coating, and evaluate the self-healing capability of the coating by atmospheric moisture. Isophorone diisocyanate (IPDI) polymerized under humid atmosphere, indicating that IPDI can be used as a healing agent. Microencapsulations of IPDI were conducted via interfacial polymerization of a polyurethane prepolymer with diol compounds. The formation of microcapsules was confirmed by Fourier-transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The mean diameter, size distribution, morphology and shell wall thickness of microcapsules were investigated by optical microscopy and scanning electron microscopy (SEM). The properties of microcapsules were studied by varying agitation rates and diol structure. The self-healing coatings were prepared on test pieces of CRC board. When scratch was generated in the coatings, the core material flew out of the microcapsules and filled the scratch. The self-healing coatings were damaged and healed under atmosphere with 68~89% relative humidity for 48 h, and SEM and impermeability test for the specimens showed that the scratch could be healed by atmospheric moisture.

Chemical Characterisation of Organic Functional Group Compositions in PM2.5 Collected at Nine Administrative Provinces in Northern Thailand during the Haze Episode in 2013

  • Pongpiachan, Siwatt;Choochuay, Chomsri;Chonchalar, Jittiphan;Kanchai, Panatda;Phonpiboon, Tidarat;Wongsuesat, Sornsawan;Chomkhae, Kanokwan;Kittikoon, Itthipon;Hiranyatrakul, Phoosak;Cao, Junji;Thamrongthanyawong, Sombat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3653-3661
    • /
    • 2013
  • Along with rapid economic growth and enhanced agricultural productivity, particulate matter emissions in the northern cities of Thailand have been increasing for the past two decades. This trend is expected to continue in the coming decade. Emissions of particulate matter have brought about a series of public health concerns, particularly chronic respiratory diseases. It is well known that lung cancer incidence among northern Thai women is one of the highest in Asia (an annual age-adjusted incidence rate of 37.4 per 100,000). This fact has aroused serious concern among the public and the government and has drawn much attention and interest from the scientific community. To investigate the potential causes of this relatively high lung cancer incidence, this study employed Fourier transform infrared spectroscopy (FTIR) transmission spectroscopy to identify the chemical composition of the $PM_{2.5}$ collected using Quartz Fibre Filters (QFFs) coupled with MiniVol$^{TM}$ portable air samplers (Airmetrics). $PM_{2.5}$ samples collected in nine administrative provinces in northern Thailand before and after the "Haze Episode" in 2013 were categorised based on three-dimensional plots of a principal component analysis (PCA) with Varimax rotation. In addition, the incremental lifetime exposure to $PM_{2.5}$ of both genders was calculated, and the first derivative of the FTIR spectrum of individual samples is here discussed.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

Interaction of Resveratrol and Genistein with Nucleic Acids

  • Usha, Subbiah;Johnson, Irudayam Maria;Malathi, Raghunathan
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.198-205
    • /
    • 2005
  • Resveratrol (RES) and genistein (GEN) are the dietary natural products known to possess chemopreventive property and also the ability to repair DNA damage induced by mutagens/carcinogens. It is believed that the therapeutic activity of these compounds could be primarily due to their interaction with nucleic acids but detailed reports are not available. We here explore the interaction of these drugs with nucleic acids considering DNA and RNA as a potential therapeutic target. The interaction of RES and GEN has been analysed in buffered solution with DNA [saline sodium citrate (SSC)] and RNA [tris ethylene diammine tetra acetic acid (TE)] using UV-absorption and Fourier transform infrared (FTIR) spectroscopy. The UV analysis revealed lesser binding affinity with nucleic acids at lower concentration of RES (P/D = 5.00 and 10.00), while at higher drug concentration (P/D = 0.75, 1.00 and 2.50) hyperchromic effect with shift in the ${\lambda}_{max}$ is noted for DNA and RNA. A major RES-nucleic acids complexes was observed through base pairs and phosphate backbone groups with K = $35.782\;M^{-1}$ and K = $34.25\;M^{-1}$ for DNA-RES and RNA-RES complexes respectively. At various concentrations of GEN (P/D = 0.25, 0.50, 0.75, 1.00 and 2.50) hyperchromicity with shift in the ${\lambda}_{max}$ from 260 $\rightarrow$ 263 om and 260 $\rightarrow$ 270 nm is observed for DNA-GEN and RNA-GEN complexes respectively. The binding constant (from UV analysis) for GEN-nucleic acids complexes could not be obtained due to GEN absorbance overlap with that of nucleic acids at 260 nm. Nevertheless a detailed analysis with regard to the interaction of these drugs (RES/GEN) with DNA and RNA could feasibly be understood by FTIR spectroscopy. The NH band of free DNA and RNA which appeared at $3550-3100\;cm^{-1}$ and $3650-2700\;cm^{-1}$ shifted to $3450-2950\;cm^{-1}$ and $3550-3000\;cm^{-1}$ in DNA-RES and RNA-RES complexes respectively. Similarly shifts corresponding to $3650-3100\;cm^{-1}$ and $3420-3000\;cm^{-1}$ have been observed in DNA-GEN and RNA-GEN complexes respectively. The observed reduction in NH band of free nucleic acids upon complexation of these drugs is an indication of the involvement of the hydroxyl (OH) and imino (NH) group during the interaction of the drugs and nucleic acids (DNA/RNA) through H-bonded formation. The interaction of RES and GEN with bases appears in the order of G $\geq$ T > C > A and A > C $\geq$ T > G. Further interaction of these natural compounds with DNA and RNA is also supported by changes in the vibrational frequency (shift/intensity) in symmetrical and asymmetrical stretching of aromatic rings of drugs in the complex spectra. No appreciable shift is observed in the DNA and RNA marker bands, indicating that the B-DNA form and A-family conformation of RNA are not altered during their interaction with RES and GEN.

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering (RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구)

  • Ha, Rin;Kim, Shin-Ho;Lee, Hyun-Ju;Park, Young-Bin;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.

Complexation of Progesterone with Cyclodextrins and Design of Aqueous Parenteral Formulations (프로게스테론과 시클로덱스트린류 간의 복합체 형성 및 수성 주사제 설계)

  • Choi, Hee-Jeong;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.151-160
    • /
    • 2001
  • The purpose of this study is to investigate the interaction of progesterone with various cyclodextrins (CDs) in the aqueous solution and in solid state, and finally to formulate a parenteral aqueous formulation. CDs used were ${\alpha}-$, ${\beta}-$, and ${\gamma}-CD$, $2-hydroxypropyl-{\beta}-CD$ (HPCD), sulfobutyl $ether-{\beta}-CD$ (SBCD), $dimethyl-{\beta}-CD$ (DMCD) and $trimethyl-{\beta}-CD$ (TMCD). The solubility studies of progesterone were performed in the presence of various CDs as a function of concentration or temperature. The solubility of progesterone increased in the rank order of ${\alpha}-CD$ < ${\beta}-CD$ < ${\gamma}-CD$ < TMCD$ < HPCD < DMCD < SBCD. Addition of SBCD (200 mg/ml) in water increased the aqueous solubility $(9.36\;{\mu}g/ml)$ about 3,200 times, and lowering the temperature facilitated the solubilization of progesterone. However, the addition of HPCD and SBCD in 20:80 (v/v) polyethylene glycol 300-water and propylene glycol-water cosolvents markedly decreased the solubility of progesterone, compared with solubilizing effects in water. Physical mixtures and solid dispersions of progesterone with HPCD or SBCD were prepared, and evaluated by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), near IR spectroscopy and dissolution studies. By DSC and IR studies, it was found that progesterone was dispersed in HPCD in monotectic state and dissolved rapidly from both solid dispersions. Based on solubility studies, new aqueous progesterone fonnulations (5 mg/ml) containing SBCD (200 mg/ml) could be prepared and did not form precipitates even after 2 months at $4^{\circ}C$. The solution was transparent when mixed with normal saline and 5% dextrose injection at 1: 1, 1:10 and 1:20 (v/v) even after 7 days. Permeation rates of progesterone through a cellulose membrane from 20% PEG 300 solution $(50\;{\mu}g/ml)$ containing HPCD or SBCD were compared with oily formulation. Permeation of progesterone from oily formulation did not occur up to 8 hr, but aqueous formulations showed fast permeation rates from early stage of permeation study. The addition of HPCD or SBCD retarded the permeation rates of progesterone with the increase of CD concentrations, suggesting the possibility of a controlled absorption from the site administered intramuscularly. These results demonstrate that it is feasible to develop a new progesterone parenteral aqueous injection (5 mg/ml) using SBCD.

  • PDF

Isolation of Bacillus subtilis GS-2 Producing γ-PGA from Ghungkukjang Bean Paste and Identification of γ-PGA (청국장으로부터 분리한 Poly(γ-glutamic acid)를 생산하는 균주 Bacillus subtilis GS-2의 분리 및 γ-PGA의 확인)

  • Bang, Byung-Ho;Jeong, Eun-Ja;Rhee, Moon-Soo;Kim, Yong-Min;Yi, Dong-Heui
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • ${\gamma}$-PGA(poly-${\gamma}$-glutamic acid) is an unusual anionic polypeptide that is made of D- and L-glutamic acid units connected by amide linkages between ${\alpha}$-amino and ${\gamma}$-carboxylic acid groups. ${\gamma}$-PGA has been isolated from many kinds of organisms. Many Bacillus strains produce ${\gamma}$-PGA as a capsular material of an extracellular viscous material. It is safe for eating as a viscosity element of fermented soybean products such as Chungkookjang and Natto. It is biodegradable, edible and nontoxic toward humans and the environment and its molecular weight varies from ten thousand to several hundred thousand depending on the kinds of strains used. Therefore, potential applications of ${\gamma}$-PGA and its derivatives have been of interest in the past few years in a broad range of industrial fields such as food, cosmetics, medicine, water-treatment, etc. In this study, a bacterium, Bacillus subtilis GS-2 isolated from the Korean traditional seasoning food, Chungkookjang could produce a large amount of ${\gamma}$-PGA with high productivity and had a simple nutrient requirement. Based on carbon utilization pattern and partial 16S rRNA sequence analysis, the GS-2 strain was identified as B. subtilis. The determination of purified ${\gamma}$-PGA was confirmed with thin layer chromatography (TLC), high performance liquid chromatography (HPLC), fourier transform infrared (FT-IR) spectra, and $^1H$-nuclear magnetic resonance ($^1H$-NMR) spectroscopy.