Browse > Article
http://dx.doi.org/10.6117/kmeps.2015.22.2.033

A Study on the Agglomeration of BaTiO3 Nanoparticles with Differential Synthesis Route  

Han, W.-J. (Department of Materials Science and Engineering, Yonsei University)
Yoo, B.-Y. (Korea Electronics Technology Institute)
Park, H.-H. (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.22, no.2, 2015 , pp. 33-39 More about this Journal
Abstract
$BaTiO_3$ is typical ferromagnetic materials with dielectric constant of above 200. $BaTiO_3$ nanoparticles applications are available for multiple purposes such as nanocapacitors, ferroelectric random access memories, and so on. Applications are is diverse from the dispersion of nanoparticles depending on the route of synthesis. In this study, $BaTiO_3$ nanoparticles were synthesized by two different methods such as oxalate method and sol-gel process (ambient condition sol method). Particle size and dispersion condition were studied according to the preparation method and capping agent. Poly vinyl pyrrolidone (PVP) was used as a capping agent in oxalate method and tetrabutylammonium hydroxide (TBAH) used as a capping agent in sol-gel process each. Cubic crystal structure of $BaTiO_3$ phase could be confirmed by X-ray diffraction analysis. Fourier transform-infrared spectroscopy was employed for the confirmation of the capping agent and $BaTiO_3$ nanoparticles. The particle size and distribution analysis was also performed by particles size analyzer and scanning electron microscope.
Keywords
$BaTiO_3$; nanoparticles; oxalate method; ambient condition sol method; agglomeration;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 L. V. Lutsev, A. I. Stognij and N. N. Novitskii, "Giant Magnetoresistance in Semiconductor/Granular Film Heterostructures with Cobalt Nanoparticles", Phys. Rev. B, 80, 184423 (2009).   DOI
2 H. T. Vo and F. G. Shi, "Towards Model-Based Engineering of Optoelectronic Packaging Materials: Dielectric Constant Modeling", Microelectron. J., 33, 409 (2002).   DOI   ScienceOn
3 E. K. Lee, K. T. Eun, Y. S. Ahn, Y. T. Kim, M. W. Chon and S. H. Choa, "Alternative Sintering Technology of Printed Nanoparticles for Roll-to-Roll Process", J. Microelectron. Packag. Soc., 21(4), 15 (2014).   DOI
4 S. C. Gong, H. S. Lim, I. S. Shin, H. H. Park, H. T. Jeon, Y. C. Chang and H. J. Chang, "A Study of Soluble Pentacene Thin Film for Organic Thin Film Transistor", J. Microelectron. Packag. Soc., 14(3), 1 (2007).
5 D. K. Hwang, K. Lee, J. H. Kim, S. Im and C. S. Kim, "Low-Voltage High-Mobility Pentacene Thin-Film Transistors with Polymer/High-k Oxide Double Gate Dielectrics", Appl. Phys. Lett., 88(24), 243513 (2006).   DOI
6 H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien and M. J. Tsai, "Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust $HfO_2$ Based RRAM", IEDM 2008, 297, IEEE international (2008).
7 D. E. Kwon, M. H.Azarian and M. Pecht, "Failure Prediction of Multilayer Ceramic Capacitors (MLCCs) under Temperature-Humidity-Bias Testing Conditions Using Non-Linear Modeling", J. Microelectron. Packag. Soc., 20(3), 7 (2013).   DOI
8 A. Feteira, D. C. Sinclair, I. M. Reaney, Y. Somiya and M. T. Lanagan, "$BaTiO_3$-Based Ceramics for Tunable Microwave Applications", J. Am. Ceram. Soc., 87(6), 1082 (2004).   DOI   ScienceOn
9 J. A. Davies and A. Dutremez, "Electroceramics from Source Materials via Molecular Intermediates: $BaTiO_3$ from $TiO_2$ $[Ti(catecholate)_3]^{2-}$", J. Am. Ceram. Soc., 73, 1429 (1990).   DOI
10 S. Bhattacharhee, M. K. Paria and S. H. Maiti, "Occurrence of Excess Titania in Strontium Titanate Prepared by the Oxalate Precipitation Route", Ceram. Int., 18, 295 (1992).   DOI
11 T. Yoko, K. Kamiya and K. Tanaka, "Preparation of Multiple Oxide $BaTiO_3$ Fibers by Sol-Gel Method", J. Mater. Sci., 25, 3922 (1990).   DOI
12 H. B. Shrama and A. Mansingh, "Sol-Gel Processed Barium Titanate Ceramics and Thin Films", J. Mater. Sci., 33, 4455 (1998).   DOI
13 D. Hennings and S. Schreinemacher, "Characterization of Hydrothermal Barium Titanate", J. Eur. Ceram. Soc., 9, 41 (1992).   DOI
14 E. Ciftci, M. N. Rahanman and M. Shumsky, "Hydrothermal Precipitation and Characterization of Nanocrystalline $BaTiO_3$ Particles", J. Mater. Sci., 36, 4975 (2001).
15 I. J. Clark, T. Takeuchi, N. Ohtori and D. C. Sinclair, "Hydrothermal Synthesis and Characterization of $BaTiO_3$ Fine Powders: Precursors, Polymorphism and Properties", J. Mater. Chem., 9, 83 (1999).   DOI
16 D. H. Mun and J. S. Ha, "The Effect of Precursor Concentration on ZnO Nanorod Grown by Low-Temperature Aqueous Solution Method", J. Microelectron. Packag. Soc., 20(1), 33 (2013).   DOI
17 T. S. Her, E. Matijevic and M. C. Chon, "Controlled Double-Jet Precipitation of Uniform Colloidal Crystalline Sr- and Zrdoped Barium Titanates", J. Mater. Res., 11, 1321 (1996).
18 B. G. Trewyn, I. I. slowing, S. Girl, H. T. Chen and V. S. Y. Lin, "Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol-Gel Process and Applications in Controlled Release", Acc. Chem. Res., 40(9), 846 (2007).   DOI
19 P. Gherardi and E. matijevic, "Homogeneous Precipitation of Spherical Colloidal Barium Titanate Particles", Colloids Surf., 32, 257 (1988).   DOI
20 M. K. Corbierre, N. S. Cameron, M. Sutton, K. Laaziri and R. B. Lennox, "Gold Nanoparticle/Polymer Nanocomposites: Dispersion of Nanoparticles as a Function of Capping Agent Molecular Weight and Grafting Density", Langmuir, 21(13), 6063 (2005).   DOI
21 C. Huang, H. Bai, Y. Huang, S. Liu, S. Yen and Y. Tseng, "Synthesis of Neutral/Hydrosol and Its Application as Antireflective Self-Cleaning Thin Film", Int. J. Photoenergy, 2012, 620764 (2012).
22 T. Tanaka, Y. Ebina, K. Takada, K. Kurashima and T. Sasaki, "Oversized Titania Nanosheet Crystallites Derived from Flux-Grown Layered Titanate Single Crystals", Chem. Mater., 15(18), 3564 (2003).   DOI
23 U. K. H. Bangi, W. Han, B. Yoo and H. H. Park, "Effects of Successive Additions of Two Capping Ligands on the Structural Properties of PbO Nanoparticles", J. Nanopart. Res., 15(11), 2070 (2013).   DOI
24 S. J. Chang, W. S. Liao, C. J. Ciou, J. T. Lee and C. C. Li, "An Efficient Approach to Derive Hydroxyl Groups on the Surface of Barium Titanate Nanoparticles to Improve Its Chemical Modification Ability", J. Colloid Interface Sci., 329(2), 300 (2009).   DOI
25 H. Xu, L. Gao and J. Guo, "Preparation and Characterizations of Tetragonal Barium Titanate Powders by Hydrothermal Method", J. Eur. Ceram. Soc., 22(7), 1163 (2002).   DOI
26 J. L. Shi, "Relation between Coarsening and Densification in Solid-State Sintering of Ceramics: Experimental Test on Superfine Zirconia Powder Compacts", J. Mater. Res., 14(4), 1389 (1999).   DOI
27 D. Tao and F. Wei, "New Procedure towards Size-Homogeneous and Well-Dispersed Nickel Oxide Nanoparticles of 30 nm", Mater. Lett., 58(25), 3226 (2004).   DOI
28 B. L. Newalkar, S. Komarneni and H. Katsuki, "Microwave-Hydrothermal Synthesis and Characterization of Barium Titanate Powders", Mater. Res. Bul., 36(13), 2347 (2001).   DOI
29 K. Nogi, M. Naito and T. Yokoyama, Nanoparticle Technology Handbook, 2nd Ed., pp.84-87, Elsevier (2012).
30 O. Carny, D. E. Shalev and E. Gazit, "Fabrication of Coaxial Metal Nanocables Using a Self-Assembled Peptide Nanotube Scaffold", Nano Lett., 6(8), 1594 (2006).   DOI
31 X. Wang and Y. Li, "Rare-Earth-Compound Nanowires, Nanotubes and Fullerene-Like Nanoparticles: Synthesis, Characterization and Properties", Chem. Eur. J., 9(22), 5627 (2003).   DOI
32 Q. Lu, F. Gao and D. Zhao, "One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process", Nano Lett., 2(7), 725 (2002).   DOI
33 J. Hu, T. W. Odom and C. M. Lieber, "Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes", Accounts Chem. Res. 32(5), 435 (1999).   DOI
34 X. Batlle and A. Labarta, "Finite-Size Effects in Fine Particles: Magnetic and Transport Properties", J. Phys. D: Appl. Phys., 35(6), R15 (2002).   DOI
35 K. Bussmann, G. A. Prinz, S. F. Cheng and D. Wang, "Switching of Vertical Giant Magnetoresistance Devices by Current through the Device", Appl. Phys. Lett., 75, 2476 (1999).   DOI
36 S. Tsunekawa, S. Ito, T. Mori, K. Ishikawa, Z. Q. Li and Y. Kawazoe," Critical Size and Anomalous Lattice Expansion in Nanocrystalline $BaTiO_3$ Particles", Phys. Rev. B, 67, 019901 (2003).