• Title/Summary/Keyword: Fourier Function

Search Result 612, Processing Time 0.031 seconds

INTERACTION OF SURFACE WATER WAVES WITH SMALL BOTTOM UNDULATION ON A SEA-BED

  • Martha, S.C.;Bora, S.N.;Chakrabarti, A.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1017-1031
    • /
    • 2009
  • The problem of interaction of surface water waves by small undulation at the bottom of a laterally unbounded sea is treated on the basis of linear water wave theory for both normal and oblique incidences. Perturbation analysis is employed to obtain the first order corrections to the reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom undulation. Fourier transform method and residue theorem are applied to obtain these coefficients. As an example, a patch of sinusoidal ripples is considered in both the cases as the shape function. The principal conclusion is that the reflection coefficient is oscillatory in the ratio of twice the surface wave number to the wave number of the ripples. In particular, there is a Bragg resonance between the surface waves and the ripples, which is associated with high reflection of incident wave energy. The theoretical observations are validated computationally.

  • PDF

Dynamic Wave Response Analysis of Floating Bodies in the Time-domain

  • Watanabe, Eiichi;Utsunomiya, Tomoaki;Yoshizawa, Nao
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.43-50
    • /
    • 2002
  • This paper presents a method to predict dynamic responses of floating bodies in the time domain. Because of the frequency-dependence of the radiation wave forces, the memory effect must be taken into account when the responses are evaluated in the time domain. Although the formulations firstly developed by Cummins (1962) have been well-known for this purpose, the effective numerical procedure has not been established yet. This study employs FFT (Fast Fourier Transform) algorithm to evaluate the memory effect function, and the equations of motion of an integro-differential type are solved by Newmark-β method. Numerical examples for a truncated circular cylinder have indicated the effectiveness of the proposed numerical procedure.

  • PDF

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.

Effects of the Geometrical Misalignment on the MTF Measurement (변조전달함수 측정에 있어 기하학적 조정 불량이 해상도에 미치는 영향)

  • Kim, Jun-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.705-713
    • /
    • 2021
  • The modulation transfer function (MTF) is calculated to analyze the resolution of the spatial frequency of the image acquired from the x-ray imaging system. In general, the response function of the detector acquires a line spread function (LSF) using a slit-camera, and derives a modulation transfer function through a Fourier transform. Because of the fact that the x-ray must always be incident on the center of the slit-camera, the tilt of the detector and slit-camera caused by the experimenter will affect the detector performance. In addition, if the tilt increases, the performance evaluation of the x-ray image system will be problematic. In this study, we analyzed the experimental and analytical models in the modulation transfer function, ie, the Fourier domain, based on the experimental error and analyzed the effect on the spatial frequency. Furthermore, performance evaluation is being carried out for various x-ray imaging systems, and experimental errors are indispensable, and the extent to which they can be tolerated should be reviewed.

Solution of TE Scattering by a Resistive Strip Grating Over Grounded Dielectric Multilayers (접지된 다층 유전체위의 저항띠 격자구조에 의한 TE 산란의 해)

  • Yoon Uei-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.913-919
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating over grounded dielectric multilayers according to the strip width and grating period, the relative permittivity and thickness of dielectric multilayers, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. Generally, the relected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects that take place and were previously called wood's anomallies$^{[7]}$. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

A study on the Automatic Algorithm for Numerical Conformal Mapping (수치등각사상의 자동화 알고리즘에 관한 연구)

  • Song, Eun-Jee
    • The KIPS Transactions:PartA
    • /
    • v.14A no.1 s.105
    • /
    • pp.73-76
    • /
    • 2007
  • The determination of the conformal maps from the unit disk onto a Jordan region has been completed by solving the Theodorsen equation which is an nonlinear equation for the boundary correspondence function. Wegmann's method has been well known for the efficient mothed among the many suggestions for the Theodorsen equation. We proposed an improved method for convergence by applying a low-frequency pass filter to the Wegmann's method and theoretically proved convergence of improved iteration[1, 2]. And we proposed an effective method which makes it possible to estimate an error even if the real value is nut acquired[3]. In this paper, we propose an automatic algorithm for numerical conformal mapping bared on this error analysis in our early study. By this algorithm numerical conformal mapping is determined automatically according to the given domain of problem and the required accuracy. The discrete numbers and parameters of the low-frequency filter were acquired only by experience. This algorithm, however, is able to determine the discrete numbers and parameters of the low-frequency filter automatically in accordance with the given region This results from analyzing the function, which may decide the shape of the given domain under the assumption that the degree of the problem depends of the transformation of a given domain, as seen in the Fourier Transform. This proposed algorithm is also ploved by numerical experience.

Analysis of the TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Plane (접지된 유전체 평면위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating on a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of dielectric layer, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. The reflected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies[7]. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

  • PDF

A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRAL ON FUNCTION SPACE

  • Lee, Il Yong;Choi, Jae Gil;Chang, Seung Jun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.217-231
    • /
    • 2013
  • In this paper we establish a Fubini theorem for generalized analytic Feynman integral and $L_1$ generalized analytic Fourier-Feynman transform for the functional of the form $$F(x)=f({\langle}{\alpha}_1,\;x{\rangle},\;{\cdots},\;{\langle}{{\alpha}_m,\;x{\rangle}),$$ where {${\alpha}_1$, ${\cdots}$, ${\alpha}_m$} is an orthonormal set of functions from $L_{a,b}^2[0,T]$. We then obtain several generalized analytic Feynman integration formulas involving generalized analytic Fourier-Feynman transforms.

Consideration on the Non-linearity of Warburg Impedance for Fourier Transform Electrochemical Impedance Spectroscopy

  • Chang, Byoung-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.119-123
    • /
    • 2014
  • Here I report on how Fourier Transform Electrochemical Impedance Spectroscopy (FTEIS) overcomes the potential-current linearity problem encountered in the impedance calculation process. FTEIS was first invented to solve the time-related drawback of the conventional impedance technique. The dramatic time reduction of FTEIS enabled the real-time impedance measurement but brought about the linearity problem at the same time. While the conventional method circumvents the problem using the steady-state made by a sufficiently long measurement time, FTEIS cannot because of its real-time function. However, according to the mathematical development reported in this article, the potential step used in FTEIS is proved to avoid the linearity problem. During the step period, the potential and the current are linearized by the electrochemical impedance. Also, Fourier transform of the differentiated potential and current is proved to give the same result of the original ones.

Comparison of interpretation methods for large amplitude oscillatory shear response

  • Kim Hyung-Sup;Hyun Kyu;Kim Dae-Jin;Cho Kwang-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.91-98
    • /
    • 2006
  • We compare FT (Fourier Transform) and SD (Stress Decomposition), the interpretation methods for LAOS (Large Amplitude Oscillatory Shear). Although the two methods are equivalent in mathematics. they are significantly different in numerical procedures. Precision of FT greatly depends on sampling rate and length of data because FT of experimental data is the discrete version of Fourier integral theorem. FT inevitably involves unnecessary frequencies which must not appear in LAOS. On the other hand, SD is free from the problems from which FT suffers, because SD involves only odd harmonics of primary frequency. SD is based on two axioms on shear stress: [1] shear stress is a sufficiently smooth function of strain and its time derivatives; [2] shear stress satisfies macroscopic time-reversal symmetry. In this paper, we compared numerical aspects of the two interpretation methods for LAOS.