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INTERACTION OF SURFACE WATER WAVES WITH SMALL
BOTTOM UNDULATION ON A SEA-BED

S. C. MARTHA, S. N. BORA* AND A. CHAKRABARTI

ABSTRACT. The problem of interaction of surface water waves by small
undulation at the bottom of a laterally unbounded sea is treated on the
basis of linear water wave theory for both normal and oblique incidences.
Perturbation analysis is employed to obtain the first order corrections to the
reflection and transmission coefficients in terms of integrals involving the
shape function ¢(x) representing the bottom undulation. Fourier transform
method and residue theorem are applied to obtain these coefficients. As an
example, a patch of sinusoidal ripples is considered in both the cases as the
shape function. The principal conclusion is that the reflection coefficient is
oscillatory in the ratio of twice the surface wave number to the wave number
of the ripples. In particular, there is a Bragg resonance between the surface
waves and the ripples, which is associated with high reflection of incident
wave energy. The theoretical observations are validated computationally.
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1. Introduction

The problems of interaction between surface waves and a pre-existing or a
fixed pattern of undulation on an otherwise flat bed are important for their pos-
sible applications in the areas of coastal and marine engineering, and as such
these are being studied by scientists and engineers with immense interest. These
problems have received an increasing amount of attention because such pat-
tern may comprise shore parallel bars or tidally generated features such as sand
waves, lying transverse to the direction of the wave propagation. These prob-
lems are, in general, somewhat difficult to solve analytically although there exist
various approximate mathematical techniques by which quantities of physical
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interests, namely the reflection and transmission coefficients, can be estimated
numerically. For example, the problem of free surface flow over an undulating
bed, called the mild-slope equation, was initially devised by Berkhoff [1] and by
Smith and Sprinks [15] independently. That was further extended by Kirby [8]
(extended mild-slope equation) and by Chamberlain and Porter [2] (modified
mild slope equation) which introduced approximate analytical techniques essen-
tially involving depth-averaging under the assumption of the small variation of
the bed.

However, the existence of a class of mostly naturally occurring bottom stand-
ing obstacles such as sand ripples, which can be assumed to be small in some
sense, allows for some sort of perturbation technique to be employed to obtain the
first order corrections to the reflection and transmission coefficients. Miles [14]
considered the diffraction of surface wave obliquely incident on a small cylindrical
deformation of the bottom of a sea. Davies and Heathershaw [5] also considered
the problem of water wave scattering by a sinusoidally varying topography on
the sea-bed for normal incidence, with the introduction of a linear friction term
in the free surface condition.

Mei [13] presented a theory that strong reflection could be induced by sand-
bars themselves when the Bragg resonance condition was met. Hara and Mei
[6] extended the linearized theory on Bragg scattering of surface waves by peri-
odic sandbars to include second-order effects of the free surface and also of the
bars. They also described new experiments which demonstrated the physical
features of the problem. Mandal and Basu [9] generalized the problem in [14] by
including the effect of surface tension at the free surface. Using Green’s integral
theorem, the reflection and transmission coefficients were obtained up to the first
order in terms of integrals involving the shape function describing the bottom
undulation.

Martha and Bora [10]-[12] have dealt with both normal and oblique scattering
of surface wave propagation over a small undulation on the bottom of a sea. By
employing perturbation analysis the velocity potential, reflection coefficient and
transmission coefficients up to the first order were obtained by using Green’s
function technique and finite cosine transformation. The results were demon-
strated with a number of practical examples. Recently Warke et al [16] obtained
closed form solutions for scattering of surface waves by wavy or exponential bed
topography. Numerical computations indicated that when solitary or sinusoidal
wave conditions were applied at the boundary, water surface elevation attained
almost a Gaussian profile.

Here we formulate the scattering problem for both normal and oblique in-
cidences of a train of surface waves propagating from negative infinity over a
sea-bed having small undulation. In both the cases, the governing boundary
value problem is reduced to a simpler one for the first order correction of the
potential using perturbation analysis involving a small parameter €. Applying
Fourier transform method to the reduced problem, it is found that the integrand
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contains certain singularities and hence the residue theorem is used while em-
ploying contour integration to evaluate the first order correction of the potential.
The reflection and transmission coefficients are evaluated approximately up to
the first order of ¢ in terms of integrals involving the shape function. For a
patch of sinusoidal ripples, a special form of the undulation, the integrals for
the reflection and transmission coefficients are evaluated explicitly. When the
ripple wave number is equal to twice the surface wave number, the first order
reflection coefficient is found to be increasing with the number of ripples. This is
consistent with the result obtained earlier in {5] while studying the surface wave
propagation over sinusoidal topography.

2. Case-I: Normal incidence

2.1. Statement and formulation

A right-handed rectangular Cartesian co-ordinate system is considered in
which z-axis is the position of the undisturbed free surface of the sea and y-axis is
measured positive vertically downwards from the undisturbed free surface. The
bottom of the sea with small undulation is described by y = h + ec(z) where
c(x) is a function with compact support and describes the bottom undulation,
h denotes the uniform finite depth of the sea far to either side of the undulation
of the bottom so that ¢(z) — 0 as |z| — oo and the non-dimensional number
£(< 1) a measure of smallness of the undulation. It is also assumed that the fluid
is incompressible and inviscid, and the motion is irrotational. Assuming linear
theory, we propose to solve for the complex-valued potential function ¢(z,y)
describing small motion in water, and satisfying the following equations:

02 9%
8x2+8y2 0 in 00 <z < 00, O_y_h—l—EC(iU)a ()
O¢
LT L Ké — = 2
9y + K¢ 0 on y=0, (2)
¢
A = 3
5 0 on y=h+ec(n), (3)

where K = ¢2/g,0 is the angular frequency of the incoming water wave train
with time dependence e~** g the acceleration due to gravity, and 0/0n the
normal derivative at a point (z,y) on the bottom. The time dependent term is
dropped throughout the analysis.

It can be assumed that a progressive wave train represented by the velocity
potential

¢, (x,) = cosh ko(h — y)e'ro® (4)

is incident upon the bottom undulation from negative infinity where kg is the
wave number of the incident wave and is the unique positive root of the equation

K = ktanhkh. (5)
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It is, then, partially reflected by and partially transmitted over the undulation
so that ¢ has an asymptotic behaviour given by

¢o(m)y)+R¢o(*xv.’y)) Tr — —0Q,

¢($ay) { quo(x’y)’ T — +00, (6)
where the constants R and T, respectively, are the usual reflection and trans-
mission coefficients defined to be the ratio of amplitudes of the reflected and
transmitted waves, respectively, to that of the incident wave, and are to be
determined. Hence,

(etko% 4+ Re~*o%) cosh ko(h —y), x — —o0,

(@:y) { Tet*0® cosh ko (h — y), T — +00. ™

2.2. Method of solution

The bottom condition d¢/0n =0 on y = h + ec(z) can be approximated up
to the first order of the small parameter ¢ as

0 0 0
2 L) ~omo i g

The boundary condition (8) and the fact that a wave train propagating in a sea
of uniform finite depth experiences no reflection, together suggest that ¢, R and
T introduced above can be expressed in terms of € as

¢ = o+ ed1 + O(e?)
R =eRy + O(c?) . 9)
T =1+¢T) + O(e?)
Using (9) in (1), (2), (8) and (7) we find that ¢,(z, y) satisfies the BVP described
by

PP ¢

= i - < <
3x2+8y2 0 in o<z <oo, 0 <y <h, (10)
Aoy
By +K¢1=0 on y=0, (11)
aqsl s d ikoz| — —_—
oy tko —dx{c(:zz)e Y=px) on y=h, (12)

Rie=%o% coshkg(h —y), as z — —o0,
and ¢ (z,y) ~ { Tyet*0® cosh ko(h — y), as T — +00. (13)

To solve this boundary value problem we now assume that the first order poten-
t_ial ¢1(x,y) is such that Fourier transform of ¢; with respect to z, denoted by
¢, exists and is given by

(6, y) = /_ o1 (2, 1)< e, (14)

together with the inverse
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O (15)

We observe that such Fourier transform exists if we make an artificial assumption
that K possesses a small imaginary part, given by ip/o/g, where ' > 0 is very
small and will be taken to be zero (in eliminating sense) at the end of the analysis.

Now, taking Fourier transform of the governing equation (10) and boundary
conditions (11) and (12), we obtain

-
68;;1*5251:0 In —o0<f<o0, 0<y<h, (16)
oo _
ai;WLK(m:O ony =0, (17)
e
ai; = A(¢) ony=h, (18)
where A(g) = /OO pla)eedz. (19)

The solution of (16) subject to the boundary conditions (17) and (18) is

— &coshéy — Ksinh &y

Taking inverse Fourier transform, the solution for the first-order velocity poten-
tial ¢1(z, y) can be written in the form

_ 1 [ {cosh&y — Ksinh&y itz
=g [ gl A ge a2

We now obtain the final result from (21) by contour integration using the residue
theorem.

We observe that equation (21) also has certain singularities (lying on the &-
axis) other than & = 0. Replacing K by K = (6% +iu' o) /g in equation (21), the
singularities of (21) are displaced off the £-axis to the upper and the lower half
planes. Hence, we write

RA(SY)

S F - —i€x
(bl(ma y) - ;}}E}O I - p (5, h)e dé-v (22)
where
F(&y) = [€coshéy — K sinh&yJA(€), (23)
Gu(Eh) = ¢€[€sinhéh — K coshEh). (24)

K=K + z'IA(g, then Ky — W' K /o which is very small and if ( = a +i8 is a
zero of the expression (24), then ¢ can be determined as

¢=za,+if, and (=+(ko+ ’7) + 7'57/1 (25)
where 3,’s are roots of Stan Sh + K = 0 and
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—cos Oph
(K1h — 1)sin(£f,h) — (£6ah) cos Buh’
v Ry el - kgh — Kyl + (koh)? /2]

+koK1 Koh — (iZkoth)
+dkoh £ (koh)3 — (£2koh?K)

where 3, > 0. Here the contour consists of the portion —R to R on the real
¢-axis and a semicircle centered at the origin and having a large radius R. The
semicircle must be taken in the upper half ¢ plane (¢ = £ + i) in anticlockwise
direction or in the lower half plane in clockwise direction according as xz < 0 or
z > 0. In the limit as R — oo, the required range of integration is recovered,
since the integration along the semicircle makes a zero contribution. Hence, by
using the residue theorem,

¢1(ac,y) _ hm [ R { y) —ix } ‘
r _*0 =1 (C h’) (=0n+iBn
+Res { F(Gy) e } ’ J forz <0, (27)
Cuw(Gh) T hprn s,

an =Ky, ol =

(26)

and

(e y) = ,},igloi[il‘es {%} L:_an-wn

n=1

—zC:c
+Res {L} ! } forxz >0, (28)
GH ( ¢=—(ko+v)—18,,

which imply that

F —l(z
¢1($ay) = llm ZRes{ ( ’ } ’
” (=an+ifn
—9ik2 o |
T Zkoh+ Szin(l)q 2koh { / 2”W”da:} cosh ko(h — y)e~*o*
o0
for z < O7 (29)
and
S F((y) e %"
$1(z,y) = limi Res{__—
w —0 n=1 GH'(<7h’) C=—cun—ifn
2ikg 00 .
+ 2koh + sinh 2koh {/OO C(x)dx} cosh ko(h — y)e
for x > 0. (30)

The first term on right hand side of each of equations (29) and (30) represents
the non-propagating modes which decay rapidly away from the undulation and
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the second term represents a propagating mode from the region of the bed dis-
turbance. Comparing equations (29) and (30) with equation (13), the reflection
and transmission coeflicients can, respectively, be written as

Rl _ —22k(2) /00 C(x)€2ikomdx7 (31)
2koh 4+ sinh 2koh J_
and )
2ik i
T = 0 dx. 32
"7 2koh 1 sinh 2koh /_ _claydz (82)

The results (31) and (32) may be interpreted as the results obtained in [14]
for normal incidence and in [9] for normal incidence when surface tension is
negligible.

Ri and T in equations (31) and (32) can be evaluated once the shape function
c(z) is known. Next we consider a special form of the function e(x).

2.3. Example of a special bed surface

We now consider the interaction of progressive surface waves with a patch
of sinusoidal ripples on the bed which do not imply any restrictions on the bed
wave number. The bed surface is given by

[ asin(lz +6), Ly <z < Lo,
olw) = { 0 otherwise, (33)
where 5 5
Ly = —nm—o Ly = mm —

l ’ 17

with a and [ as the amplitude and the wave number, respectively, of the sinusoidal
ripples and § an arbitrary phase angle; and m and n as positive integers. This
represents a patch of sinusoidal ripples on an otherwise flat bottom, the patch
consisting of (n+m)/2 ripples having the same wave number [. For this specific
bed profile we obtain the reflection and transmission coefficients, respectively,
as

R ~2z’k;§a {
Y 2koh fsinh 2koh 12 — (2ko)2
X |:(_1)’ne2ik2()L1 o (71)m62ik0L2:| (34)
and ) (—a)
21k —a
T = 0 —1)™ — (=1)"|. 35
' 9koh fsinh 2koh | [< )" == } (35)

For the case in which there is an integer number of ripple wavelengths in the

patch Ly <z < Ly such that m = n and § = 0, as considered in [5] also, we find
Ry and Ty, respectively, as

2koa (—1)™(2ko/l) . [ 2kemn
Ry = . sin ;
2koh + sinh 2koh  (2ko/1)% — 1 l

Ty = 0. (37)

(36)

and
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These results match exactly with those obtained in [5]. Equation (36) illustrates
that for a given number of m ripples, the first order wave reflection coefficient is
an oscillatory function in the quotient of twice the surface wave number and the
ripple wave number. Furthermore, if the bed wave number is equal to twice the
surface wave number, i.e., 2ky = [, equation (36) reveals that there is a resonant
Bragg-type interaction between the surface waves and bed forms. This resonant
interaction is reported in [3], [4] and [13]. The resonant interaction over sandbars
is described in [7] with experiment demonstration. Hence, at resonance, we find
from equation (36) that

_ koamm

- Qkoh + sinh 2k0h’
from which we observe that the reflection coefficient increases linearly in the
number of ripples m in the patch. It indicates that relatively few bottom un-
dulations, with wave number equal to approximately twice the surface wave
number, may give rise to a very substantial reflected wave. A possible conse-
quence of this is a coupling between ripple growth and wave reflection, which
may be important for problems of coastal protection.

(38)

Ry

3. Case II: Oblique incidence
3.1. Statement and formulation

We consider a right-handed rectangular Cartesian co-ordinate system in which
xz-plane is the position of the undisturbed free surface of the sea and the y-axis
is measured positive vertically downwards from the undisturbed free surface.
Considering the same small undulation and other assumptions as in the formu-
lation for the normal incidence case as described in Section 2.1, we proceed to
handle the case of oblique incidence. Assuming linear theory, we want to solve
for the complex-valued potential function ¢(z,y, z) describing the small motion
in water and satisfying the following equations:

I

@+W+ﬁ = 0 in 0 <y <h+ec(z), (39)
0
8—3—!—1(1/) = 0 ony=0, (40)
%’(_b_ = 0 on y=h+ec(z), (41)
n

where 9/0n denotes the normal derivative at a point (x,y, ) on the bottom.
It can be assumed that a progressive wave train represented by the velocity
potential
¥, (x,y, 2) = cosh ko(h — y)etmetvz) (42)
is obliquely incident upon the bottom undulation from negative infinity, where
ko, the wave number of the incident wave, is the unique positive real root of
equation (5) and
u=kocos8, v=~kysing® (0<60<n/2), (43)



Interaction of surface water waves with small bottom undulation 1025

where 6 is the angle of oblique incidence of the wave train (§ = 0 corresponds
to normal incidence), u and v are, respectively, the z and z components of k.

It is, then, partially reflected by and partially transmitted over the undulation
so that ¢ has the asymptotic behaviour given by

7/10($’y,2)+R1/’o(*xay72)> as r — —00,
¥(z,y, 2) { Ty, (2,9, 2), as ¥ — +oo.

which imply

7% —iux\ Livz _ B
w(x,y,z>~{<e + e e cosh fylh ), s oo,

Tehztvz) cosh kg(h — ), as T — +00.

3.2. Method of solution

The bottom condition (41) can be approximated up to the first order of the
small parameter ¢ as

0 3] o o?
8—1§—€|:% {c(x)a—qi}—l—c(x)a—;f] =0ony=h. (45)

Now, in view of the geometry of the problem, i.e., because of the uniformity in
the z-direction, ¢(x,y, 2) can be written as

Wz, y,2) = p(x,y)e"”. (46)
Then ¢(z, y) satisfies the equations

(V2= 1)p=0 in —co<z<oo0, 0<y<h, (47)

g_jJrngso on y=0, (48)

o [ 06

== i G = =h 49

| g {0} - este] 0 omy—n
_J (& + Rem®)coshko(h —y), as x — —oo,

(@, y) { Te"™ cosh ko(h — y), as ¢ — +o00. (50)

where V? is the two-dimensional Laplacian operator.

Thus the bottom condition, in effect, reduces approximately to a condition
on y = h. This suggests that we may consider the governing partial differential
equation for ¢ to hold in the strip 0 < y < h,—00 < x < oo along with the
boundary conditions (48), (49) and the far field requirements (50). Tt may be
noted here that both R and T depend upon ¢.

In view of the boundary condition (49) and with the similar consideration
as in the normal incidence case, we can express ¢, R and T in terms of the
perturbation parameter ¢ as in equation (9) with

bo(x,y) = cosh ko(h — y)e' ™. (51)
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Using ¢o(z,y) in (9) and applying it to (47)-(50) we find that ¢1(x,y) satis-
fies equation (47) and the condition (48) together with the following additional
conditions:
0 d . .
8(21 i {c(z)e™} — vPc(z)e™ =V(z) ony=h, (52)
Rye™ ™" cosh kg(h — v), as T — —00,
and  ¢1(z,y) { T1e*® cosh ko(h — y), as T — +00. (53)

Applying Fourier transform, as given by equation (14), to the boundary value
problem, we get

- o~ gcoshgy — K sinh Ey
= == = =—A(§). 54
Bl = g A (54)
where £2 = £2 + 12 and
A(g) = /00 V(z)e®dz. (55)

Taking inverse Fourier transform, the solution ¢1(x, y) for the first-order velocity
potential can be found as

oo =5 [ Cooshéy — KSihiy ), g, (s0)
T J—oo &€ sinh € — K cosh €h)

We now obtain the final result from (56) by contour integration using the residue
theorem as done previcusly.

Here also we observe that the equation (56) has certain singularities (lying on
the £-axis) other than 2 =0 . Replacing K by K (as defined in Section 2.2) in
equation (56), the singularities of (56) are displaced off the ¢-axis to the upper
and the lower half planes. Hence, we write

1 * F(Ea y) —ifx
lim — 2 d§, 57
nto) = fim o [ oS g (57)
where
F(&y) = [Ecoshéy— K sinh&y]A(©), (58)
G (€ h) = £[€sinh &h — K cosh £h). (59)

IfK =K, + iK», and if { = a+ 18 is a zero of the expression (59), then ¢ can
be determined as

(=+a,+if, and ==+(ko+7)+id,. (60)

where ay, On,7y and ), are given by equation (26).
Substituting ¢ = 41/¢% + 2, the roots { = +a, + i8, give

(~ i\/ (B2 + 12) + K5 (2007 )
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up to the first order of I?Q, which gives
¢~ *isy as p/ — 0, where s, = /32 + 12, (61)

and the roots ¢ = +(ko +v) £43, give
¢~ tkocosh = +pu (62)

up to the first order of K5 and when @' — 0. Again we consider the same

contour as in Section 2.2 and perform the integration along it. Then by using
the residue theorem,

x = lim (—4 3 €5 M
¢l< 7y) - ul,ﬂo( )[ZR { Guz(é,h) }‘(isn

+ Res {w} ‘ } for xz < 0, (63)
C=p

and
—i(:z;
$(z,y) = Mllino [ZR {T} IC:—isn

Res {%} L:_J for 2 > 0. (64)

After simplifying and then comparing equations (63) and (64) with equation
(53), the reflection and transmission coefficients can, respectively, be written as

—2ik2 sec @ cos 20 [ .
Ry = 2 o 65
Y Skoh + sinh 2koh /_Oo clz)edz (65)
and
2ik2 sec d i
T = u dz. 66
Y7 9%oh + sinh 2koh / olz)d (66)

The results (65) and (66) may be interpreted as the results obtained in [14] and
in [9] when surface tension is negligible. It is observed, as the expression of R,
contains a cos 26 term, that for oblique incidence at § = T of a wave train, the
reflection coefficient Ry up to the first order vanishes independently of the shape
of bottom undulation, as also mentioned in {14] and in [9]. Also the results for
normal incidence of Section 2 can be obtained by putting ¢ = 0.

Equations (65) and (66) can be evaluated once the shape function c(z) is
known. Next we consider a special form for the function ¢(x).

3.3. A special bed surface

Now consider the interaction of progressive surface waves with a patch of
sinusoidal ripples on the bed where the patch is given by equation (33).
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For this case we obtain the reflection and transmission coefficients, respec-
tively, as
—2ik3asec 6 cos 20 ! [(
2koh + sinh 2koh 12 — (2u)?2

1=

_1)n62ip,L1 _ (_1)me2iuL2] , (67)

and ) a)
2ikgsecd —a

- )™ - (-1 "} 68

2koh + sinh 2koh [ [( ) (1) (68)

For the case in which there is an integer number of ripple wavelengths in the

patch L; < x < L; such that m = n and § = 0, we find R, and T3, respectively,

as
_ 2kpasecfcos20 (—1)"(2ko/l) . [2pmm
B = b 1 smhokor  uiE—1 P\ "7 ) (69)

T

and

Ty = 0. (70)
These results exactly match with those obtained in [5] when ¢ = 0. Equation (69)
illustrates that for a given number of m ripples, the first order wave reflection
coefficient is an oscillatory function in the ratio of twice the z-component of
the wave number and the ripple wave number. Furthermore, if the bed wave
number is twice the z-component of the wave number (241/1 = 1), then equation
(69) reveals that there is a resonant Bragg-type interaction between the surface
waves and bed forms as described in Section 2.3. Hence, at resonance, we find
from equation (69) that

_ koa sec? 0 cos 20

~ Zkoh + sinh 2koh
from which we observe that R; becomes a constant multiple of m, the number
of ripples in the patch. It indicates that relatively few bottom undulations with
its wave number equal to approximately twice the xz-component of the surface
wave number, may give rise to a very substantial reflected wave as described in
Section 2.3.

R: (71)

4. Numerical results

The numerical computation is shown here for the first order reflection co-
efficient given by equation (69). In figure 1, |R;| is plotted against the wave
number kgh for one, three and five ripples with a/h = 0.1,{h = 1. From the
graph, for the single ripple, it is clear that its peak value is attained when the
wave number of the bottom undulation lh becomes approximately twice as large
as surface wave number koh. This is most evident in the curve which has its
maximum value 0.0732 at kgh — 0.5442.

Again when the number of ripples is increased to three, the same general
feature of |R;| is now observed with the modification that the overall values of
R, is now increased to 0.2167 at koh = 0.5442 in comparison to the case of
m = 1; the oscillating nature of |R;| against koh is more pronounced and the
number of zeros of | Ry| also increases. Again this phenomenon becomes clearly
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FIGURE 1. Reflection coefficient against the wave number koh
for 8 =0;a/h =0.1;lh = 1;m = 1,3 and 5.

as| i
-
-
-
-
3 . R
~ .
~ o .
~ ’
~
2.5 ~ . 4
~ s
~ ’
S ,
— L , B
o« 2 AN 7
N ,
N 7
L N 4 i
15 N ,
N ’
- N ’ -
- N ’ -
1 I N ’ - 7
el » 4 -
[ N , -
~ N ’ S
osf T ~. N ; - -
~ N . -7
~. s -
~.8 -
o L
o 0.5 0.7854 1 1.5

Angle of incidence

F1GURE 2. Reflection coefficient against the angle of incidence
0 for koh = 0.03163;a/h = 0.1;lh = 1;m = 1,2 and 6

evident when m is increased to 5 and the maximum value of |R;| is 0.3607 at
koh = 0.5. A general observation that follows is that as the number of ripples
increases, the peak value of |R;| increases and it becomes more oscillatory.

In figure 2, the reflection coefficient |R;| is depicted against the angle of
incidence @ for kgh = 0.03163,a/h = 0.1,lh = 1 and for ripples m = 1,m = 2
and m = 6, respectively. From the graph it is clear that for § = T |R1| vanishes
independently of the shape of the function which validates equation (65).

5. Conclusion

Fourier transform method is used to solve the problem of surface water wave
interaction with small undulation on an otherwise flat bottom of a sea for both
the normal and oblique incidences. Initially, by using perturbation technique,
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the formulated boundary value problem is reduced to one in the first order
potentials whereby obtaining the reflection and transmission coefficients. Due
to the presence of singularities in the integrals, residue theorem is employed to
evaluate the integrals appearing in the first order correction of the potential.
After deriving the velocity potential, the reflection and transmission coeflicients
up to first order are obtained. Application of these results for a sinusoidal
bottom undulations yields results which coincide exactly with the results for the
same given in the literature. From the numerical results it is observed that the
reflection coeflicient increases when the number of ripples increases. It indicates
that relatively few bottom undulations, at resonance, may give rise to a very
substantial reflected wave field. A possible consequence of this is a coupling
between ripple growth and wave reflection, which may be important for problems
of coastal protection. The present method clearly has a more general approach
than the one employed in [5] and it has definite advantages over some other
methods which employ Green’s function technique. The procedure followed here
is simple and very easy to apply.

REFERENCES

1. J.C.W. Berkhoff, Computation of combined refraction-diffraction, Proceedings 13th Con-
ference on Coastal Engineering, July 1972, Vancouver, Canada, ASCE. 2(1973), 471-490.

2. P.G. Chamberlain and D. Porter, The modified mild-slope equations, J. Fluid Mech.
291(1995), 393-407.

3. A.G. Davies, On the interaction between surface waves and undulations on the sea bed, J.
Marine Res. 40(1982), 331-368.

4. A.G. Davies, The reflection of wave energy by undulations of the sea bed, Dynamics of
Atmosphers and Oceans 6 (1982), 207-232.

5. A.G. Davies and A.D. Heathershaw, Surface-wave propagation over sinusoidally varying
topography, J. Fluid Mech. 144(1984), 419-443.

6. T. Hara and C.C. Mei, Bragg scattering of surface waves by periodic bars: theory and
experiment, J. Fluid Mech. 178 (1987), 221-241.

7. A.D. Heathershaw, Seabed-wave resonance and sand bar growth, Nature 296(1982), 343-
345.

8. J.T. Kirby, A general wave equation for waves over rippled beds, J. Fluid Mech. 162(1986),
171-186.

9. B.N. Mandal and U. Basu, A note on oblique water-wave diffraction by a cylindrical
deformation of the bottom in the presence of surface tension, Archive of Mech. 42(1990),
723-727.

10. S8.C. Martha and S.N. Bora, Water wave diffraction by a small deformation of the ocean
bottom for oblique incidence, Acta Mech. 185(2006), 165-177.

11. S.C. Martha and S.N. Bora, Oblique surface wave propagation over a small undulation on
the bottom of an ocean, Geophy. Astrophy. Fluid Dynamics, 101 (2007a), 65-80.

12. 8.C. Martha and S.N. Bora, Refelction and transmission coefficients for water wave scat-
tering by a sea-bed with small undulation, Z. Angew. Math. Mech. (ZAMM). 87(2007b),
314-321.

13. C.C. Mei, Resonant reflection of surface water waves by periodic sand-bars, J. Fluid Mech.
152(1985), 315-335.



14.

15.

16.

Interaction of surface water waves with small bottom undulation 1031

J.M. Miles, Oblique surface wave diffraction by a cylindrical obstacle, J. Atmos. and
Oceans 6(1981), 121-123.

R. Smith and T. Sprinks, Scattering of surface waves by a conical island, J. Fluid Mech.
72(1975), 373-384.

A.8. Warke, S.K. Das and L. Debnath, Propagation of surface waves on irregular bed
topography, J. Appl. Math. and Computing 20(2006), 197-208.

8. C. Martha received his M.Sc. from Sambalpur University, India and was a senior re-
search fellow in the Department of Mathematics, Indian Institute of Technology Guwahati,
Guwahati 781039 at the time of preparation of this manuscript. After obtaining his Ph.D.
in 2007 from IIT Guwahati, he joined in the Department of Mathematics, Indian Institute
of Science, Bangalore 560012 as a post doctoral fellow. His main areas of interest are water
wave scattering and very large floating structures (VLFS).

Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
e-mail: scmartha@@math.iisc.ernet.in

S. N. Bora received his M.Sc. from University of Delhi, India and Ph.D. from Dalhousie
University, Halifax, Canada in Engineering Mathematics. He is an Associate Professor in
the Department of Mathematics, Indian Institute of Technology Guwahati. His research
interests focus on water waves, flows through porous media, special functions etc.
Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781039,
India

e-mail: swaroop@@iitg.ernet.in

A. Chakrabarti received his M.Sc. and Ph.D. in Applied Mathematics from Calcutta
University, Kolkata, India and retired as Professor in Department of Mathematics, Indian
Institute of Science, Bangalore. He is currently a University Grant Commission (UGC)
Fellow in the same institute. His areas of research are in water waves, integral equations,
integral transforms etc.

Department of Mathematics, Indian Institute of Science, Bangalore 560012; India
e-mail: alok@@math.iisc.ernet.in



