• Title/Summary/Keyword: Fourier 변환

Search Result 899, Processing Time 0.026 seconds

Measurement of Mode Shape By Using A Scanning Laser Doppler Vibrometer (스캐닝 레이저 도플러 진동계를 이용한 모드 해석)

  • Gang, Min-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2560-2567
    • /
    • 2000
  • When spatially dense velocity distribution is measured by a scanning laser Doppler vibrometer, the Fourier transform method provides the real and imaginary parts of the mode shapes in the form of a polynomial. However the Fourier transform method is often impractical because the independent decomposition property of cosine and sine components into real and imaginary parts, respectively, does not hold due to the leakage problem which commonly occurs in the Fourier transform of harmonic signals. To deal with this problem, a Hilbert transform method is newly proposed in this article. The proposed method is free from the leakage problem and relatively robust to the scanning error. A simulation example is provided to verify the effectiveness of this method.

Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis (2차원 푸리에변환과 주성분분석을 기반한 초음파 용접검사의 신호분류기법)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.590-596
    • /
    • 2004
  • Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented.

Parametric Sensitivity Analysis Using Fourier Transformation (푸리에 변환을 이용한 파라미터 민감도 해석)

  • Baek, Moon-Yeal;Lee, Kyo-Seung
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.58-64
    • /
    • 2005
  • 주파수 영역 민감도 해석법은 동적 시스템의 전달함수에 대한 설계 파라미터의 변화에 의한 효과를 파악하기 위해 사용되어 왔으며, 이때의 민감도 함수는 시스템 설계 파라미터에 대한 시스템 전달 함수의 편미분 값이다. 일반적으로 종래의 주파수 영역 민감도 해석은 직접 미분법이나 라플라스 변환이 사용되어 왔다. 라플라스 변환을 사용하는 경우에 시스템의 차수가 증가할수록 역행렬 조작은 매우 많은 시간을 필요로 하며 또한 어려운 작업이다. 본논문에서는 이러한 다점을 보완하기 위하여 푸리에변환을 이용한 민감도 기법을 제시하였다. 파라미터의 변화에 대한 진폭-주파수 특성의 민감도 해석을 간단한 2자유도 모델과 로터 다이나믹 시스템에 적용하였다.

  • PDF

Deriving the Fourier Transforms of Pulse Signals Through the Look-up Tables (찾아보기 목록에 의한 고차 펄스의 푸리에 변환법)

  • 오용선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.327-338
    • /
    • 1993
  • This paper proposes a novel method for deriving the Fourier transform pairs of high order pulses given in a generalized form. Primarily, modifying the PRS system model, we establish a new model which simplifies the process of Fourier analysis of the n-th order pulse signal, resulting in a representative relationship. In succession, we present the Frame Formula which plays a role of substituent for the parameters in table look-up procedures. Each look-up table contains all the parameters needed to obtain the Fourier transform of the corresponding pulse of any order. Regarding the amount of calculations and the complexity of procedures required to derive the transforms of pulse signals, analytically or numerically, this method is more compact and timesaving than conventional methods. When pulse has a much narrow width of equivalently higher the order of several pulses, the method presented here acts to the best of its true merit.

  • PDF

Evaluation of Inverse Fourier Integral Considering the Distances from the Source Point in 2D Resistivity Modeling (전기비저항탐사 2차원 모델링에서 송수신 간격을 고려한 푸리에 역변환)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • In the two-dimensional (2D) modeling of electrical method, the potential in the space domain is reconstructed with the calculated potentials in the wavenumber domain using inverse Fourier transform. The inverse Fourier integral is numerically evaluated using the transformed potential at different wavenumbers. In order to improve the precision of the integration, either the logarithmic or exponential approximation has been used depending on the size of wavenumber. Two numerical methods have been generally used to evaluate the integral; interval integration and Gaussian quadrature. However, both methods do not consider the distance from the current source. Thus the resulting potential in the space domain shows some error. Especially when the distance from the current source is very small or large, the error increases abruptly and the evaluated potential becomes extremely unstable. In this study, we developed a new method to calculate the integral accurately by introducing the distance from the current source to the rescaled Gauss abscissa and weight. The numerical tests for homogeneous half-space model show that the developed method can yield the error level lower than 0.4 percent over the various distances from the current source.

Determining the Thickness of a Trilayer Thin-Film Structure by Fourier-Transform Analysis (푸리에 변환을 이용한 3층 구조 박막의 두께 측정)

  • Cho, Hyun-Ju;Won, Jun-Yeon;Jeong, Young-Gyu;Woo, Bong-Ju;Yoon, Jun-Ho;Hwangbo, Chang-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.143-150
    • /
    • 2016
  • The thickness of each layer in a multilayered system is determined by a Fourier-transform method using spectroscopic reflectance measurements. To verify this method, we first generate theoretical reflectance spectra for three layers, and these are fast-Fourier-transformed using our own Matlab program. Each peak of the Fourier-transformed delta function denotes the optical thickness of each layer, and these are transformed to physical thicknesses. The relative thickness error of the theoretical model is less than 1.0% while a layer's optical thickness is greater than 730 nm. A PI-(thin $SiO_2$)-PImultilayeredstructure produced by the bar-coating method was analyzed, and the thickness errors compared to SEM measurements. Even though this Fourier-transform method requires knowing the film order and the refractive index of each layer prior to analysis, it is a fast and nondestructive method for the analysis of multilayered structures.

Reconfigurable Flight Control Law based on Model Following Scheme and Parameter Estimation (매개변수 추정 및 모델추종 적응제어기법을 이용한재형상 비행제어시스템 연구)

  • Mun, Gwan-Yeong;Kim, Yu-Dan;Lee, Han-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.67-73
    • /
    • 2006
  • In this paper, a reconfigurable model following flight control method is proposed based on direct adaptive scheme using parameter estimation. Adaptive control scheme updates the control gains to make the system output follow the reference output even when fault occurs. By adopting the frequency domain parameter estimation method, system changes by the fault can be estimated. Recursive Fourier transformation is used for system identification. Using recursive Fourier transform, the proposed adaptive control algorithm guarantees the system stability and improves the system characteristics. To evaluate the performance of proposed control method, numerical simulations are performed.

Guidedwave-induced rockbolt integrity using Fourier and wavelet transforms (유도파에 대한 푸리에 및 웨이브렛 변환을 이용한 록볼트의 건전도 평가)

  • Lee, In-Mo;Kim, Hyun-Jin;Han, Shin-In;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 2007
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these types of structures. The purpose of this study is the evaluation of rock bolt integrity using Fourier and wavelet transforms of the guided ultrasonic waves. After five rock bolt specimens with various defect ratios are embedded into a large scale concrete block, guided waves are generated by a PZT (lead zirconate titanate) element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the frequency domain using the Fourier transform, and in the time-frequency domain using the wavelet transform based on a Gabor wavelet. The spectrum obtained from the Fourier transform shows that a portion of high frequency contents increases with increase in the defect ratio. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with the defect ratio. This study shows that the spectrum ratio and the energy velocity may be indicators fur the evaluation of rock bolt integrity.

  • PDF

Connection between Fourier of Signal Processing and Shannon of 5G SmartPhone (5G 스마트폰의 샤논과 신호처리의 푸리에의 표본화에서 만남)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.69-78
    • /
    • 2017
  • Shannon of the 5G smartphone and Fourier of the signal processing meet in the sampling theorem (2 times the highest frequency 1). In this paper, the initial Shannon Theorem finds the Shannon capacity at the point-to-point, but the 5G shows on the Relay channel that the technology has evolved into Multi Point MIMO. Fourier transforms are signal processing with fixed parameters. We analyzed the performance by proposing a 2N-1 multivariate Fourier-Jacket transform in the multimedia age. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^{\dot{+}}=nl_n$, where $A^{\dot{+}}$ is the transpose matrix of the element-wise inverse of A, that is, $A^{\dot{+}}=(a^{-1}_{kj})$, which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.