• 제목/요약/키워드: Four-bar linkage

검색결과 47건 처리시간 0.019초

얀센메커니즘을 이용한 로봇 설계 (Design of Robot Using of Jansen Mechanism)

  • 김병진;김현민;이효정
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.501-505
    • /
    • 2016
  • In this study, a robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism. Our goal is to finish the given path using given terms. The various programs was used to understand the mechanism in more detail. DISON m.Sketch, EDISON Designer, Theo Jansen Mechanism Optimization Solver. Using these programs, we can design the robot in more dtails and reduce errors and trials. For the design and implementation of a robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

  • PDF

비대면 시스템 구현을 위한 자율주행 서빙 로봇 (Automobile Serving Robot for Untact System)

  • 홍정훈;송창의;김대관;이근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.945-948
    • /
    • 2020
  • 최근 코로나 사태로 인하여 한국에서는 사람 간에 거리를 두는 사회적 거리 두기와 생활 속 거리두기를 시행하고 있다. 또 식당에서의 지출 중 가장 큰 비율을 차지하고 있다. 인건비를 절감하기 위해 본 연구는 2D Lidar 센서를 사용하여 식당에서의 사람과의 접촉이 가장 큰 서빙의 역할을 로봇이 직접 하는 것을 목표로 하였다. Lidar 센서를 이용해서 SLAM을 구현하였고 안드로이드 앱을 사용하여 주문 결제를, Four Bar Linkage를 사용하여 음식 전달 부분을 구현하였다.

위치/힘 피드백이 가능한 외골격 구조의 데이터 글로브 개발 (Development of Exoskeleton-Type Data Glove for Position/Force Feedback)

  • 김민정;김대경;박한길;김의겸;최병준;최혁렬
    • 대한기계학회논문집A
    • /
    • 제35권12호
    • /
    • pp.1585-1591
    • /
    • 2011
  • 본 연구에서는 사용자의 손에 장착하여 손의 움직임을 측정하고 힘의 반영이 가능한 새로운 형태의 데이터 글로브(data glove)를 제안한다. 본 연구의 데이터 글로브는 인간의 외골격 구조의 분석이 기반하고 있으며 하나의 손가락 모듈은 4절기구의 조합을 통하여 1자유도로 구동이 되도록 고안되어 있다. 데이터 글로브는 펴기(extension)와 구부리기(flexion)를 할 수 있으며 내전(adduction)/외전(abduction)을 위해서 두 개의 유니버설 관절을 이용한 새로운 metacarpal joint 메커니즘을 고안하였다. 동 데이터 글로브의 유효성을 평가하기 위하여 검지손가락을 위한 구동회로와 센서를 포함한 전체 시스템을 제작하였으며 가상공간에 동적 시뮬레이션을 통해서 나타낸 물체를 조작하는 실험을 수행하였다.

비원형 유성기어열을 사용한 이앙기 식부기구의 설계 (Design of a rice transplanting mechanism with noncircular planetary-gear-train system)

  • 배강열
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.108-116
    • /
    • 2005
  • Transplanting accuracy of a rice transplanter mainly depends on the trajectory of the hoe for picking, conveying and transplanting of seedlings as well as the return motion. The trajectory can be decided and prescribed to be suitable in treating seedlings fur a prevailing soil condition. For the purpose of the transplanting accuracy, the design of a transplanting mechanism would be carried out using a planetary-gear-train system instead of the four bar linkage system. In this study, a design method of transplanting mechanism is theoretically proposed by synthesizing a noncircular planetary-gear-train system fur the tool (hoe) to trace a prescribed trajectory. The method utilizes an optimization approach to decide the lengths of an arm and a tool, the inverse kinematics to figure out the configuration angles of the two links, the roll contact condition in transmitting motion between the gears, and a linearization approach to obtain the shapes of the gears. Based on the proposed method, the shapes of the gears and the lengths of the tools of the planetary-gear-train system are determined fur three prescribed trajectories. A kinematical simulation with a commercialized package program is also carried out to confirm that the gear-train system synthesized with the proposed method is able to trace the prescribed trajectory.

Transport Velocity of Perilla Grain on Oscillating Sieve in Elliptical Motion

  • Pang, Yeoun Gyu;Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • 제43권3호
    • /
    • pp.194-201
    • /
    • 2018
  • Purpose: The objective of this study was to propose a formula for the theoretical grain mean transport velocities of an elliptically moving oscillator by modifying the grain mean transport velocity formula applied to linear motion and to compare the calculated values with the experimental values of grain mean transport velocity. Methods: The values of the throwing index ($K_v$) and the maximum horizontal velocities for various positions on the elliptical oscillator were obtained using kinematic analysis. To obtain the actual grain transport velocity, the mean transport velocities of perilla grains at six positions on the sieve surface were measured using a high-speed camera and compared with the theoretical values. The cam with an eccentric bearing on the oscillator was designed to be eccentric by 1.6 cm so that the lengths of the major axis of the elliptical motion were 3.2-3.6 cm. The material used in the experiments was perilla grain. Results: The experimental result was consistent with the theoretical value calculated using the proposed formula ($R^2$ is 0.80). It is considered that the angle difference between the maximum accelerations in the directions vertical and horizontal to the sieve has as much influence on the grain mean transport velocity as the value of Kv itself. Conclusions: It was possible to theoretically obtain the grain mean transport velocities through a screening device in elliptical motion by modifying the formula of the grain mean transport velocities used in linear motion.

형상적응형 파지와 케이징 파지가 가능한 부족구동 기반 로봇 의수 메커니즘 개발 (Development of Under-actuated Robotic Hand Mechanism for Self-adaptive Grip and Caging Grasp)

  • 신민기;조장호;우현수;김기영
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.484-492
    • /
    • 2022
  • This paper presents a simple and robust under-actuated robotic finger mechanism that enables self-adaptive grip, fingertip pinch, and caging grasp functions. In order to perform daily activities using hands, the fingers should be able to perform adaptive gripping and pinching motion, and the caging grasp function is required to realize natural gripping motions and improve grip reliability. However, general commercial prosthetic hands cannot implement all three functions because they use under-actuation mechanism and simple mechanical structure to achieve light-weight and high robustness characteristic. In this paper, new mechanism is proposed that maintains structural simplicity and implements all the three finger functions with simple one degree-of-freedom control through a combination of a four-bar linkage mechanism and a wire-driven mechanism. The basic structure and operating principle of the proposed finger mechanism were explained, and simulation and experiments using the prototype were conducted to verify the gripping performance of the proposed finger mechanism.

Evaluation of a Crank-type Walking Cultivator for Upland Farming

  • Kwon, Tae Hyeong;Ashtiani-Araghi, Alireza;Lee, Chungu;Kang, Tae Gyoung;Lee, Byeong-Mo;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • 제39권1호
    • /
    • pp.1-10
    • /
    • 2014
  • Purpose: This research was conducted to evaluate feasibility of a crank-type walking cultivators for weeding in furrowed upland. Methods: A walking cultivator developed by RDA was selected and evaluated with its working speed (S), cultivation depth (CD) and weeding performance (WP). The evaluation was performed in upland field on July and August, 2012. Also kinematic analysis of the machine was performed to draw out design improvements. Results: S in flat, uphill and downhill were about 0.11 m $s^{-1}$, 0.11 m $s^{-1}$, and 0.13 m $s^{-1}$ respectively. It was found that S had a low relevance with user conditions. The CD was 35 ~ 40 mm which was satisfied with the RDA guide for weeding machine. A wide variation was observed in values of WP depending on the growth stages of weeds and field conditions. The cultivator showed low performance in eliminating the well-grown weeds. Kinematic simulation revealed that high forward speed caused a high ratio of un-weeded area. Conclusions: The weeding performance of the cultivator was satisfactory for weeds in early growth stage but it showed difficulties in handling on up-slope and in entering up-land. Specifically, the weight of the cultivator was judged as overweight for female workers. The crank-hoe type cultivator was judged as unsuitable for small walking type machine due to weight of the four-bar linkage system. Kinematic analysis revealed that the ratio of crank speed to the ground speed must be 850 rpm s $m^{-1}$ (255 rpm based on 0.3 m $s^{-1}$) or greater to avoid uncultivated area. Selection of forward speed is a decisive factor in designing the weeding cultivator.