• Title/Summary/Keyword: Four-Leg Inverter

Search Result 27, Processing Time 0.022 seconds

A Novel Fault Detection Scheme for Voltage Fed PWM Inverter (전압형 PWM 인버터의 새로운 고장 검출 기법)

  • Yu, Ok-Sun;Park, Nam-Ju;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • This paper presents a new fault detection scheme for voltage fed inverter to improve the reliability of power electronic system, which is of paramount importance in the wide industrial applications. The proposed method is achieved by using voltage across lower switches in each phase under the switch fault condition. The reconfiguration method is achieved by the four-switch topology connecting a faulty leg to the middle point of DC-link using bidirectional switches. The proposed method has a simple algorithm and fast fault detection time. Therefore, normal operation of the system after faults is continuously achieved by reconfiguration of system topology. The superior performance of the proposed fault detection and tolerance method are proved by simulation.

Utility-Interactive Four-Switch Three-Phase Soft-Switching Inverter with Single Resonant DC-Link Snubber and Boost Chopper

  • Ahmed, Tarek;Nagai, Shinichiro;Nakaoka, Mutsuo;Tanaka, Toshihiko
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.109-117
    • /
    • 2007
  • In this paper, a novel proposal for a utility-interactive three-phase soft commutation sinewave PWM power conditioner with an auxiliary active resonant DC-link snubber is developed for fuel cell and solar power generation systems. The prototype of this power conditioner consists of a PWM boost chopper cascaded three-phase power conditioner, a single two-switch auxiliary resonant DC-link snubber with two electrolytic capacitors incorporated into one leg of a three-phase V-connection inverter and a three-phase AC power source. The proposed cost-effective utility-interactive power conditioner implements a unique design and control system with a high-frequency soft switching sinewave PWM scheme for all system switches. The operating performance of the 10 kW experimental setup including waveform quality, EMI/RFI noises and actual efficiency characteristics of the proposed power conditioner are demonstrated on the basis of the measured data.

Analysis of Carrier PWM Algorithms For Three Phase Four Wire Multi-level Inverter

  • Nho Nguyen Van;Youn Myung Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.635-639
    • /
    • 2004
  • This paper presents a simple PWM method to control three phase four leg multilevel inverters, which have been developed for supplying electrical power to three phase unbalanced load and for related power active filters. The method is derived from a general correlation between space vector PWM (SVPWM) method and carrier based PWM (CPWM) method. As an advantage, the simplicity and flexibility of the proposed CPWM control can be obtained and the complicated calculations of the 3-D SVPWM concepts can be avoided. The method has been mathematical formulated and demonstrated by simulation results.

  • PDF

A Novel Control Strategy of Three-phase, Four-wire UPQC for Power Quality Improvement

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The current paper presents a novel control strategy of a three-phase, four-wire Unified Power Quality (UPQC) to improve power quality. The UPQC is realized by the integration of series and shunt active power filters (APF) sharing a common dc bus capacitor. The realization of shunt APF is carried out using a three-phase, four-leg Voltage Source Inverter (VSI), and the series APF is realized using a three-phase, three-leg VSI. To extract the fundamental source voltages as reference signals for series APF, a zero-crossing detector and sample-and-hold circuits are used. For the control of shunt APF, a simple scheme based on the real component of fundamental load current (I $Cos{\Phi}$) with reduced numbers of current sensors is applied. The performance of the applied control algorithm is evaluated in terms of power-factor correction, source neutral current mitigation, load balancing, and mitigation of voltage and current harmonics in a three-phase, four-wire distribution system for different combinations of linear and non-linear loads. The reference signals and sensed signals are used in a hysteresis controller to generate switching signals for shunt and series APFs. In this proposed UPQC control scheme, the current/voltage control is applied to the fundamental supply currents/voltages instead of fast-changing APF currents/voltages, thus reducing the computational delay and the required sensors. MATLAB/Simulink-based simulations that support the functionality of the UPQC are obtained.

New RPWM techniques for three-phase induction motor drive using four-switch three-phase inverter (4-SWITCH 3상인버터를 이용한 3상 유도전동기 구동을 위한 새로운 RPWM 기법)

  • Lee Hyo-Sang;Kwon Soo-Bum;Park Jong-Jin;Kim Nam-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.168-172
    • /
    • 2003
  • 본 논문에서는 고주파 스위칭 시 스위칭 손실의 감소, 구현의 용이성 및 인버터 제어를 위하여 요구되는 연산시간 감소 등 다양한 장점을 가진 2-LEG 인버터를 대상으로, 새로운 RPWM(Random PWM) 기법에 의한 3상유도전동기 구동 방식에 대하여 서술한다. 기존의 RPWM 방식과 비교하여 제안한 RPWM 기법으로부터, 10000(rpm) 이상의 고속운전 영역에서의 인버터 출력전류의 고조파 스펙트럼을 넓은 주파수 영역으로(특정주파수의 side band) 고루 분산시켜 RPWM의 고조파 저감효과에 대한 우수성을 입증하고자 한다. 이러한 과정에서 제안된 RPWM 기법을 적용한 알고리즘에 대하여 DSP를 이용한 IGBT 인버터에 의한 실험을 수행하여, 이로부터 그 결과를 검토하여 제안된 기법의 타당성을 검증하고자 한다.

  • PDF

Constant DC Capacitor Voltage Control based Strategy for Active Load Balancer in Three-phase Four-wire Distribution Systems

  • Win, Tint Soe;Tanaka, Toshihiko;Hiraki, Eiji;Okamoto, Masayuki;Lee, Seong Ryong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.176-183
    • /
    • 2014
  • Three-phase four-wire distribution systems are used for both three-phase three-wire loads and single-phase two-wire consumer appliances in South Korea, Myanmar and other countries. Unbalanced load conditions frequently occur in these distribution systems. These unbalanced load conditions cause unbalanced voltages for three-phase and single-phase loads, and increase the loss in the distribution transformer. In this paper, we propose constant DC capacitor voltage control based strategy for the active load balancer (ALB) in the three-phase four-wire distribution systems. Constant DC capacitor voltage control is always used in active power line conditioners. The proposed control strategy does not require any computation blocks of the active and reactive currents on the distribution systems. Balanced source-side currents with a unity power factor are obtained without any calculation block of the unbalanced active and reactive components on the load side. The basic principle of the constant DC capacitor voltage control based strategy for the ALB is discussed in detail and then confirmed by both digital computer simulations using PSIM software and prototype experimental model. Simulation and experimental results demonstrate that the proposed control strategy for the ALB can balance the source currents with a unity power factor in the three-phase four-wire distribution systems.

Fault Detection of BLDC Motor Drive Based on Operating Characteristic (BLDC 전동기 운전 특성을 이용한 고장 검출 기법 구현)

  • Lee, Jung-Dae;Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.88-95
    • /
    • 2008
  • This paper proposes a fast fault detection algorithm under open-circuit fault of a switch for a brushless DC(BLDC) motor drive system. This proposed method is configured without the additional devices for fault detection and identification. The fault detection and identification are achieved by a simple algorithm using the operating characteristic of the BLDC motor. After the fault identification, the drive system is reconfigured for continuous operation. This system is reconfigured by four-switch topology connecting a faulty leg to the middle point of DC-link bidirectional switches. This proposed method can also be embedded into existing BLDC motor drive systems as a subroutine without excessive computational effort. The feasibility of a the proposed fault detection algorithm is validated in simulation and experiment.