• Title/Summary/Keyword: Four-Bar Mechanism

Search Result 79, Processing Time 0.03 seconds

Development of Standing and Gait Assistive Wheelchair (기립 및 보행 보조 휠체어의 개발)

  • Song, Chan Yang;Yoon, Hyo Joon;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.587-592
    • /
    • 2013
  • Until recently, the primary users of wheelchairs were people with lower body disabilities. However, the number of patients recovering from accidents or surgery, as well as the number of elderly people using wheelchairs, is constantly increasing. This study examined the design and manufacture of standing and gait assist wheelchairs that assist temporary gait disturbed patients to take rehabilitation training and elderly people to engage in walking exercise. A kinematic analysis was used to select a drive motor and design a four-bar linkage mechanism for lifting the backrest vertically. Using a multibody dynamic simulation, detailed design was performed taking into consideration the spatial motion and partial interference, and the necessary push force and stroke of the linear actuator were also calculated. To ensure structural safety, the von-Mises equivalent stresses of the upper and lower brackets of the linear actuator were verified through a finite element analysis. The manufactured wheelchair was shown to operate successfully as intended, using the developed controller for the drive motors and linear actuator.

Modeling and Sliding-mode Control of a Robot Manipulator actuated by the Ball Screw (볼나사를 이용한 매니퓰레이터의 모델링 및 슬라이딩모드 제어)

  • 최형식;박용헌;정경식;이호식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.292-295
    • /
    • 2001
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, a new type of robot actuated by the ball screw was proposed. The ball screw is actuated by using four bar mechanism. The dynamics model of the robot was set up. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, the sliding-mode control was applied.

  • PDF

Development of a Human-Sized Biped Walking Robot (인체형 이족보행로봇의 개발)

  • 최형식;박용헌;김영식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.484-491
    • /
    • 2002
  • We developed a new type of human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The robot overcomes the limit of the driving torque of conventional BWRs. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has a space to board DC battery and controllers. In the performance test, the BWR performed sitting-up and down motion, and walking motion. Through the test, we found the possibility of a high performance biped-walking.

Modeling for The Dynamics of 10 D.O.F Biped Robot (10자유도 이족 보행로봇 운동식의 모텔링)

  • 최형식;이호식;박용헌;전대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.343-343
    • /
    • 2000
  • The conventional actuators with the speed reducer had weakness in supporting the weight of the body and leg itself. To overcome this, a new four bar link mechanism actuated by the ball screw was proposed. Using this, we developed a new type of 10 D.O.F biped robot. The dynamics model of the biped robot is investigated in this paper. In the modeling process, the robot dynamics are expressed in the joint coordinates using the Euler-Lagrange equation. Then, they are converted in to the sliding joint coordinates, and joint torques are expressed in the force along the sliding direction of the ball screw. To test modeling of the robot, a computer simulation was performed.

  • PDF

A Revolute Robot Manipulator with a New Structure (새로운 구조의 다관절 로봇 매니퓰레이터)

  • Choi, Hyung-Sik;Kim, Young-Sik;Baek, Chang-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.539-546
    • /
    • 2004
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To overcome this, a new type of the robot actuator based on the four-bar-link mechanism driven by the ball screw was proposed and constructed. Also, a new type of a revolute-jointed robot manipulator composed of the developed actuators was developed. The base axis is actuated by the motor with the conventional speed reducer, but the other axes are actuated by the proposed actuators. The kinematics and dynamics of the robot were analyzed, and the performance test of the robot was made. Through the test results, the performance of superior load capacity versus the robot weight is shown.

Shear strengthening of seawater sea-sand concrete beams containing no shear reinforcement using NSM aluminum alloy bars

  • Yasin Onuralp Ozkilic;Emrah Madenci;Ahmed Badr;Walid Mansour;Sabry Fayed
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.153-172
    • /
    • 2024
  • Due to the fast development of constructions in recent years, there has been a rapid consumption of fresh water and river sand. In the production of concrete, alternatives such as sea water and sea sand are available. The near surface mounted (NSM) technique is one of the most important methods of strengthening. Aluminum alloy (AA) bars are non-rusting and suitable for usage with sea water and sand concrete (SSC). The goal of this study was to enhance the shear behaviour of SSC-beams strengthened with NSM AA bars. Twenty-four RC beams were cast from fresh water river sand concrete (FRC) and SSC before being tested in four-point flexure. All beams are the same size and have the same internal reinforcement. The major factors are the concrete type (FRC or SSC), the concrete degree (C25 or C50 with compressive strength = 25 and 50 MPa, respectively), the presence of AA bars for strengthening, the direction of AA bar reinforcement (vertical or diagonal), and the AA bar ratio (0, 0.5, 1, 1.25 and 2 %). The beams' failure mechanism, load-displacement response, ultimate capacity, and ductility were investigated. Maximum load and ductility of C25-FRC-specimens with vertical and diagonal AA bar ratios (1%) were 100,174 % and 140, 205.5 % greater, respectively, than a matching control specimen. The ultimate load and ductility of all SSC-beams were 16-28 % and 11.3-87 % greater, respectively, for different AA bar methods than that of FRC-beams. The ultimate load and ductility of C25-SSC-beams vertically strengthened with AA bar ratios were 66.7-172.7 % and 89.6-267.9 % higher than the unstrengthened beam, respectively. When compared to unstrengthened beams, the ultimate load and ductility of C50-SSC-beams vertically reinforced with AA bar ratios rose by 50-120 % and 45.4-336.1 %, respectively. National code proposed formulae were utilized to determine the theoretical load of tested beams and compared to matching experimental results. The predicted theoretical loads were found to be close to the experimental values.

Design of Robot Using of Jansen Mechanism (얀센메커니즘을 이용한 로봇 설계)

  • Kim, beong jin;Kim, hyeon min;Lee, hyo jung
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.501-505
    • /
    • 2016
  • In this study, a robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism. Our goal is to finish the given path using given terms. The various programs was used to understand the mechanism in more detail. DISON m.Sketch, EDISON Designer, Theo Jansen Mechanism Optimization Solver. Using these programs, we can design the robot in more dtails and reduce errors and trials. For the design and implementation of a robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

  • PDF

다이케스팅 머신의 구조 해석

  • 윤승원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.813-817
    • /
    • 1995
  • Structural analysis of horizontal cold chamber die casting machine is performed by the FEM. The analyzed model is made up of stationary die platen,movable die platen,link housing platen, C-frame, and tie bar which mainly undertake die locking force and injection force. In modeling, compression gap elements are used for to simulate contacting condition between tie bar and movable die platen, movable die platen and base frame, and link housing and base frame. Unbalanced die locking force imposed on four tie bars are considered. As the results, the deformed shape and the stresses of the die casting machine are given.

  • PDF

Implementation of A Spatial 3-DOF Haptic Mechanism (공간형 3 자유도 Haptic 메커니즘의 구현)

  • 이재훈;이수강;이병주;이석희;이정헌;김희국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.312-316
    • /
    • 2004
  • In this study, a spatial 3-dof haptic mechanism is implemented. The implemented mechanism does not employ the gear transmissions as velocity reducers for all three joints but uses wire-based transmissions, thereby it is able to minimize the frictions significantly. Also, by employing the structure of the four-bar mechanism to drive third joint from close to the base, the mechanism is able to minimize the inertia effect from the third actuator very effectively. Its kinematic analysis such as position and velocity analyses are performed first. Then, its operating software development, hardware implementation, and the related interfaces between a PC and the implemented Haptic device are completed. To evaluate its potential and its performance as a haptic device, a experiment generating a virtual constraint in a operational task space is conducted and preliminary results are discussed.

  • PDF