• 제목/요약/키워드: Foundation Design

검색결과 2,056건 처리시간 0.028초

Foundation Fieldbus에서 효율적인 실시간 데이터 전송 (Effective Real-Time Data Transmission in the Foundation Fieldbus)

  • 홍승호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권11호
    • /
    • pp.644-649
    • /
    • 2003
  • This study develops an analytical model for the delay analysis of real-time data in the token-passing service of Foundation Fieldbus(FF). Using the analytical model, this study proposes a network design scheme of FF Two design criteria are introduced in this study; one is the average delay of real-time data, and the other is the maximum allowable delay of real-time data. The network design scheme determines the network parameters that satisfies the performance requirements given by these design criteria.

Investigation on economical method of foundation construction on soft soils in seismic zones: A case study in southern Iran

  • Javad Jalili;Farajdollah Askari;Ebrahim Haghshenas;Azadeh Marghaiezadeh
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.209-232
    • /
    • 2023
  • A comprehensive study was conducted to design economical foundations for a number of buildings on soft cohesive soil in the southern coastal regions of Iran. Both static and seismic loads were considered in the design process. Cyclic experiments indicated that the cohesive soil of the area has potential for softening. Consequently, the major challenge in the design stages was relatively high dimensions of settlement, under both static and seismic loadings. Routine soil-improvement methods were too costly for the vast area of the project. After detailed numerical modeling of different scenarios, we concluded that, in following a performance-based design approach and applying a special time schedule of construction, most of the settlement would dissipate during the construction of the buildings. Making the foundation as rigid as possible was another way to prevent any probable differential settlement. Stiff subgrade of stone and lime mortar under the grid foundation and a reinforced concrete slab on the foundation were considered as appropriate to this effect. In favor of an economical design, in case the design earthquake strikes the site, the estimations indicate no collapse of the buildings even if considerable uniform settlements may occur. This is a considerable alternative design to costly soil-improvement methods.

교량기초의 신뢰성 설계규준에 관한 연구 (A Study on Reliability Based Design Criteria for Bridge Foundation)

  • 손용우;정철원
    • 전산구조공학
    • /
    • 제6권1호
    • /
    • pp.77-89
    • /
    • 1993
  • Current Bridge foundation design is based on Working Stress Design(WSD), but Load Factor Based on Optimum Reliability(LFBOR) design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the bridge foundation, which is most common type of bridge foundation(Shallow, Pile and Caission), and also proposes the theoretical basis of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis of bridge foundation and the uncertainty measuring algorithms of each equation are also derived by Cornell's MFOSM(Mean First Order 2nd Moment Methods)using the stability analysis fourmula Highway Bridge Design Codes.

  • PDF

다양한 기초 형식에 따른 단자유도 구조물 지진하중 평가를 위한 동적 원심모형실험 (Dynamic Centrifuge Tests for Evaluating the Earthquake Load of the Structure on Various Foundation Types)

  • 하정곤;조성배;박헌준;김동관;김동수
    • 한국지진공학회논문집
    • /
    • 제20권5호
    • /
    • pp.285-293
    • /
    • 2016
  • Soil-foundation-structure interaction (SFSI) is one of the important issues in the seismic design for evaluating the exact behavior of the system. A seismic design of a structure can be more precise and economical, provided that the effect of SFSI is properly taken into account. In this study, a series of the dynamic centrifuge tests were performed to compare the seismic response of the single degree of freedom(SDOF) structure on the various types of the foundation. The shallow and pile foundations were made up of diverse mass and different conjunctive condition, respectively. The test specimen consisted of dry sand deposit, foundation, and SDOF structure in a centrifuge box. Several types of earthquake motions were sequentially applied to the test specimen from weak to strong intensity of them, which is known as a stage test. Results from the centrifuge tests showed that the seismic responses of the SDOF structure on the shallow foundation and disconnected pile foundation decreased by the foundation rocking. On the other hand, those on the connected pile foundation gradually increased with intensity of input motion. The allowable displacement of the foundation under the strong earthquake, the shallow and the disconnected pile foundation, have an advantage in dissipating the earthquake energy for the seismic design.

기초분리말뚝 공법의 설계기법 개발 (Development of Design Method of Disconnected Piled Raft Foundation System)

  • 최정인;민기훈;김성호;권오성;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.691-699
    • /
    • 2008
  • In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.

  • PDF

전철주기초 설계 자동화 프로그램 개발 (Development of Automated Design Program for Electric Railway Pole Foundation)

  • 김정무;정원용;전윤배;안승화;송규석;김종남;이수형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.692-697
    • /
    • 2010
  • In this paper, a design program for electric railway pole foundation was developed by applying the estimation study performed by Korean Railway. There are two kinds of shapes in the cross-section of electric railway pole foundation: rectangle and circle. In foundation designing, The rectangular foundation should be satisfied with vertical, horizontal and moment equilibrium equations. On the other hand, the circular foundation should be satisfied with horizontal and moment equilibrium equations. The design program was coded into MFC(Microsoft Foundation Class) by MS Visual C. The equation's roots in the program were obtained by Incremental Search method. Dialog and property sheet(Wizard Mode) input windows were selected for user-friendliness. The biggest advantage of this program is to find an optimum depth in a given section.

  • PDF

연약점토지반 Piled-Raft 기초의 김해지역에서의 적용성 (Piled-Raft Foundation on Soft Clay in Gimhae Area)

  • 서영교
    • 한국해양공학회지
    • /
    • 제18권3호
    • /
    • pp.20-25
    • /
    • 2004
  • For the structural foundation above the soft clay layer conditions, the design charts are first presented for the evaluation of both bearing capacity and total settlement in the basic raft foundation system. wad settlement relationship curves are used to evaluate the ultimate soil bearing capacity. The total settlement is evaluated by applying various traditional factors into the ultimate bearing capacity. Then, the parametric studies are carried out for the piled-raft foundation system. In the numerical analysis, the elasto-pastic finite element model(Mohr-Coulomb model) is used to present the foundation response and design charts, which enable the determination of the raft size and pile length and spacing.

Optimal design of stone columns reinforced soft clay foundation considering design robustness

  • Yu, Yang;Wang, Zhu;Sun, HongYue
    • Geomechanics and Engineering
    • /
    • 제22권4호
    • /
    • pp.305-318
    • /
    • 2020
  • Stone columns are widely used to treat soft clay ground. Optimizing the design of stone columns based on cost-effectiveness is always an attractive subject in the practice of ground treatment. In this paper, the design of stone columns is optimized using the concept of robust geotechnical design. Standard deviation of failure probability, which is a system response of concern of the stone column-reinforced foundation, is used as a measure of the design robustness due to the uncertainty in the coefficient of variation (COV) of the noise factors in practice. The failure probability of a stone column-reinforced foundation can be readily determined using Monte Carlo simulation (MCS) based on the settlements of the stone column-reinforced foundation, which are evaluated by a deterministic method. A framework based on the concept of robust geotechnical design is proposed for determining the most preferred design of stone columns considering multiple objectives including safety, cost and design robustness. This framework is illustrated with an example, a stone column-reinforced foundation under embankment loading. Based on the outcome of this study, the most preferred design of stone columns is obtained.

가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 - (A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation -)

  • 장석한;김희광;이강현;한경수;함방욱;정기선
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.