• Title/Summary/Keyword: Forward scheduling

Search Result 43, Processing Time 0.029 seconds

The Channel Scheduler based on Water-filling Algorithm for Best Effort Forward Link Traffics in AMC/TDM/CDM System (AMC/TDM/CDM 다중접속방식에서의 Best Effort 순방향 서비스를 위한 Water-filling Based 채널 스케줄러)

  • Ma, Dongl-Chul;Ki, Young-Min;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2003
  • The channel scheduler is suggested the radio resource management method in order to provide service with guaranteeing fairness and throughput to the users who use limited wireless channel. Proportional fairness scheduling algorithm is the channel scheduler used in the AMC(Adaptive Modulation and Coding)/TDM system, and this algorithm increases the throughput considering the user's time fairness. In this paper is suggested the channel scheduler combining CDM scheme available in AMC/TDM/CDM system. Unlike the system which only uses TDM which provide the only one user at the same slot, this scheduler can service a lot of users since this uses the CDM scheme with multi-cord channel. At every moment, allocation of transmission power to multi-channel users is problematic because of CDM scheme. In this paper, we propose a water-filling scheduling algorithm to solve the problem. Water-filling fairness(WF2) scheduling algorithm watches the average channel environment. So, this modified method guarantees fairness for each user in terms of power and service time.

  • PDF

Probability-based Critical Path Estimation for PERT Networks of Repetitive Activities (반복작업 PERT 네트워크의 확률기반 주공정 산정기법)

  • Yi, Kyoo-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.595-602
    • /
    • 2018
  • Network-based scheduling methods can be classified into CPM method and PERT method. In the network scheduling chart, critical path can be estimated by performing the forward calculation and the backward calculation though the paths in the network chart. In PERT method, however, it is unreasonable to simply estimate the critical path by adding the sum of the activity durations in a specific path, since it does not incorporate probabilistic concept of PERT. The critical path of a PERT network can change according to the target period and deviation, and in some cases, the expected time of the critical path may not be the path with longest expected time. Based on this concept, this study proposes a technique to derive the most-likely critical path by comparing the sum of estimated time with the target time. It also proposes a method of systematically deriving all alternate paths for a network of repetitive activities. Case studies demonstrated that the most-likely critical path is not a fixed path and may vary according to the target period and standard deviation. It is expected that the proposed method of project duration forecasting will be useful in construction environment with varying target date situations.

An Operation Scheduling of Transporters Considering Turns and Passing Delay at the Intersection Roads on the Shipyard (교차로 구간 회전 및 감속을 고려한 트랜스포터 최소 공주행 운영계획)

  • Moon, Jong-Heon;Ruy, Won-Sun;Cho, Doo-Yeoun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.187-195
    • /
    • 2017
  • The operation planning of transports used to move blocks is the one of key factors. Furthermore, reducing the running time through the effective plan contributes to pulling forward the whole logistic process of the shipyard and substantially saving the fuel consumption of itself as well. The past researches of the transporter focused on finding only the shortest distances, so called, Manhattan distance. However, these searching approaches cannot help having the significant difference in the real operational time and distance with the minimum cost approach which considers the speed retardation for turns or safety at the intersection. This study suggests the noble transporter's operational model which could take account of the consuming operational time around the crossroads on the shipyard. Concretely, the proposed method guarantees the minimization of transporters' turns and passage number which are huge burdensome to the operation time and the whole planning of transports with the given period. Resultantly, this paper is willing to explain the appropriateness of our approach, compared with the previous ones.

Scheduling of Concurrent Transactions in Broadcasting Environment

  • Al-Qerem, Ahmad;Hamarsheh, Ala;Al-Lahham, Yaser A.;Eleyat, Mujahed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1655-1673
    • /
    • 2018
  • Mobile computing environment is subject to the constraints of bounded network bandwidth, frequently encountered disconnections, insufficient battery power, and system asymmetry. To meet these constraints and to gain high scalability, data broadcasting has been proposed on data transmission techniques. However, updates made to the database in any broadcast cycle are deferred to the next cycle in order to appear to mobile clients with lower data currency. The main goal of this paper is to enhance the transaction performance processing and database currency. The main approach involves decomposing the main broadcast cycle into a number of sub-cycles, where data items are broadcasted as they were originally sequenced in the main cycle while appearing in the most current versions. A concurrency control method AOCCRBSC is proposed to cope well with the cycle decomposition. The proposed method exploits predeclaration and adapts the AOCCRB method by customizing prefetching, back-off, and partial backward and forward validation techniques. As a result, more than one of the conflicting transactions is allowed to commit at the server in the same broadcast cycle which empowers the processing of both update and read-only transactions and improves data currency.

A Simple Cooperative Transmission Protocol for Energy-Efficient Broadcasting Over Multi-Hop Wireless Networks

  • Kailas, Aravind;Thanayankizil, Lakshmi;Ingram, Mary Ann
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.213-220
    • /
    • 2008
  • This paper analyzes a broadcasting technique for wireless multi-hop sensor networks that uses a form of cooperative diversity called opportunistic large arrays (OLAs). We propose a method for autonomous scheduling of the nodes, which limits the nodes that relay and saves as much as 32% of the transmit energy compared to other broadcast approaches, without requiring global positioning system (GPS), individual node addressing, or inter-node interaction. This energy-saving is a result of cross-layer interaction, in the sense that the medium access control (MAC) and routing functions are partially executed in the physical (PHY) layer. Our proposed method is called OLA with a transmission threshold (OLA-T), where a node compares its received power to a threshold to decide if it should forward. We also investigate OLA with variable threshold (OLA-VT), which optimizes the thresholds as a function of level. OLA-T and OLA-VT are compared with OLA broadcasting without a transmission threshold, each in their minimum energy configuration, using an analytical method under the orthogonal and continuum assumptions. The trade-off between the number of OLA levels (or hops) required to achieve successful network broadcast and transmission energy saved is investigated. The results based on the analytical assumptions are confirmed with Monte Carlo simulations.

Pipeline-Aware QC-IRA-LDPC Code and Efficient Decoder Architecture (Pipeline-Aware QC-IRA-LDPC 부호 및 효율적인 복호기 구조)

  • Ajaz, Sabooh;Lee, Hanho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.72-79
    • /
    • 2014
  • This paper presents a method for constructing a pipeline-aware quasi-cyclic irregular repeat accumulate low-density parity-check (PA-QC-IRA-LDPC) codes and efficient rate-1/2 (2016, 1008) PA-QC-IRA-LDPC decoder architecture. A novel pipeline scheduling method is proposed. The proposed methods efficiently reduce the critical path using pipeline without any bit error rate (BER) degradation. The proposed pipeline-aware LDPC decoder provides a significant improvement in terms of throughput, hardware efficiency, and energy efficiency. Synthesis and layout of the proposed architecture is performed using 90-nm CMOS standard cell technology. The proposed architecture shows more than 53% improvement of area efficiency and much better energy efficiency compared to the previously reported architectures.

Vehicle Lateral Stability Management Using Gain-Scheduled Robust Control

  • You, Seung-Han;Jo, Joon-Sang;Yoo, Seung-Jin;Hahn, Jin-Oh;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1898-1913
    • /
    • 2006
  • This paper deals with the design of a yaw rate controller based on gain-scheduled H$\infty$ optimal control, which is intended to maintain the lateral stability of a vehicle. Uncertain factors such as vehicle mass and cornering stiffness in the vehicle yaw rate dynamics naturally call for the robustness of the feedback controller and thus H$\infty$ optimization technique is applied to synthesize a controller with guaranteed robust stability and performance against the model uncertainty. In the implementation stage, the feed-forward yaw moment by driver's steer input is estimated by the disturbance observer in order to determine the accurate compensatory moment. Finally, HILS results indicate that the proposed yaw rate controller can satisfactorily improve the lateral stability of an automobile.

A GoP-based Dynamic Transmission Scheduling for supporting Fast Scan Functions with m-times playback rate in Video-On-Demand (주문형 비디오에서 m배속 고속 재생을 위한 GoP 기반 동적 전송 스케줄 작성)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1643-1651
    • /
    • 1999
  • Video-On-Demand (VOD) is expected to provide the user with interactive operations such as VCR functions. In particular, fast scan functions like “Fast Forward” of “Fast Backward” for a certain speedup playback are required. Since they require a significant amount of system resources, schemes to reduce bandwidth requirements for the network or disk are needed. In MPEG standard, Group-of-Pictures (GoP) is a random access unit which can be decoded independently. Since storing and transmitting a video stream based on GoP is efficient, it is practical to support fast scan functions based on GoP. In this paper, we present a dynamic transmission scheduling scheme to support fast scan functions with m-times normal playback rate for a stored video. The proposed scheme writes a transmission schedule whenever user requests a fast scan function. That is, the scheme constructs the data set to be smoothed by skipping GoPs according to a given speedup factor, and then writes the transmission schedule by applying a bandwidth smoothing. Finally, the scheme restarts the transmission of video data to a client according to the new schedule. The proposed scheme results in speeding up the playback rate by utilizing “GoP skipping”, and then reduces the computational overhead by applying a bandwidth smoothing based on GoP.

  • PDF

Implementation of A Multiple-agent System for Conference Calling (회의 소집을 위한 다중 에이전트 시스템의 구현)

  • 유재홍;노승진;성미영
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.205-227
    • /
    • 2002
  • Our study is focused on a multiple-agent system to provide efficient collaborative work by automating the conference calling process with the help of intelligent agents. Automating the meeting scheduling requires a careful consideration of the individual official schedule as well as the privacy and personal preferences. Therefore, the automation of conference calling needs the distributed processing task where a separate calendar management process is associated for increasing the reliability and inherent parallelism. This paper describes in detail the design and implementation issues of a multiple-agent system for conference calling that allows the convener and participants to minimize their efforts in creating a meeting. Our system is based on the client-sewer model. In the sewer side, a scheduling agent, a negotiating agent, a personal information managing agent, a group information managing agent, a session managing agent, and a coordinating agent are operating. In the client side, an interface agent, a media agent, and a collaborating agent are operating. Agents use a standardized knowledge manipulation language to communicate amongst themselves. Communicating through a standardized knowledge manipulation language allows the system to overcome heterogeneity which is one of the most important problems in communication among agents for distributed collaborative computing. The agents of our system propose the dates on which as many participants as possible are available to attend the conference using the forward chaining algorithm and the back propagation network algorithm.

  • PDF

An Enhanced Scheme of Target Coverage Scheduling m Rotatable Directional Sensor Networks (회전 가능한 방향센서네트워크에서 타겟 커버리지 스케줄링 향상 기법)

  • Kim, Chan-Myung;Han, Youn-Hee;Gil, Joon-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8A
    • /
    • pp.691-701
    • /
    • 2011
  • In rotatable directional sensor networks, maximizing network lifetime while covering all the targets and forwarding the sensed data to the sink is a challenge problem. In this paper, we address the Maximum Directional Cover Tree (MDCT) problem of organizing the directional sensors into a group of non-disjoint subsets to extend the network lifetime. Each subset in which the directional sensors cover all the targets and forward the sensed data to the sink is activated at one time. For the MDCT problem, we first present an energy consumption model which mainly takes into account the energy consumption for rotation work. We also develop the Directional Coverage and Connectivity (DCC)-greedy algorithm to solve the MDCT problem. To evaluate the algorithm, we conduct simulations and show that it can extend the network lifetime.