• Title/Summary/Keyword: Forward inverter

Search Result 56, Processing Time 0.021 seconds

Speed Control of Capacitor-Run Induction Motor Using Voltage Control of the Auxiliary Winding (보조권선 전압제어에 의한 커패시터 런 유도전동기의 속도제어)

  • Ryu, Jun-Hyeong;Lee, Gwang-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.7
    • /
    • pp.357-362
    • /
    • 1999
  • This paper presents a speed control method for the capacitor-run induction motor. The equivalent circuit of the motor is analyzed using the forward(Positive sequence) and backward(negative sequence) components, and simple circuit equations are obtained. Simulations for the speed control are performed by adjusting the voltage magnitude of the auxiliary winding. A prototype system has been implemented which consists of an inverter and a controller with TMS320C31 digital signal processor. The experimental results using 1/4hp capacitor-run induction motor show a good agreement with analyses.

  • PDF

Development of Power Supply Unit for high power GTO driver (대용량 GTO 구동회로용 Power Supply Unit 개발)

  • Cha, J.D.;Yang, H.J.;Hong, S.W.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.609-612
    • /
    • 1996
  • This paper describes a design and implementation of the practical SMPS(Switched Mode Power Supply) with multi-output independent regulation scheme. The designed SMPS is applied to the PSU(Power Supply Unit) of high power GTO drivers for a inverter system. In order to accomplish precise voltage regulations for both turn-on and turn-off bias voltages of the GTO driver, the conventional forward type PWM converter scheme is adopted with the Post Regulator using a Saturable Reactor. Analytic design criteria and control schemes are described for practical applications. Finally, the precise regulation of multi-output voltages is proved by experimental results.

  • PDF

The Forward Type High Frequency Pulse Power Supply (Forward형 고주파 펄스 전원장치)

  • 김경식;원재선;송현직;김동희;이광식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.184-188
    • /
    • 1999
  • The power semiconductor switching devices(PSSD) continuously developed, Power Electronic Technology using PSSD is gradually extended. The high frequency inverter to generate the large power high frequency subject to power electronic technology pursuit various applications. Also, in emboss with environmental destruction problem cause the atmosphere and the water pollution to growth of the commercial society, the research in favor of cleaning environmental a pollutant actively proceed. Therefore, This paper describe study on the high frequency pulse power supply. The theoretical results are in good agreement with the experimental ones. The proposed pulse power supply is considerated to be useful for discharge lamp.

  • PDF

Analysis of 3 Phase utility interactive photovoltaic power generation system (3상 태양광발전시스템의 계통연계운전 해석)

  • Kim, Woo-Hyun;Kim, Chang-Il;Kim, Bong-Tae;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.236-238
    • /
    • 1999
  • This paper presents a model and analysis results of 3 phase utility interactive photovoltaic power generation system. The control system is composed of feed forward, feedback and PID system. The voltage source inverter system provides sinusoidal PWM at current for the loads of utility system. A phase to ground fault and 3 phase fault are analyzed, and the results are discussed.

  • PDF

Analysis on Position Estimation Performance according to Injection Frequency in Carrier-Based Sensorless Operation (반송파 기반 센서리스 운전에서 주입하는 신호의 주파수에 따른 위치 추정 성능 분석)

  • Hwang, Chae-Eun;Lee, Younggi;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2018
  • This work puts forward a theoretical analysis on position estimation performance of interior permanent magnet synchronous motor (IPMSM) according to the injection frequency in carrier-based sensorless operation. The effects of spatial harmonics on inductance and voltage distortion due to the nonideal characteristics of IPMSM and inverter are examined as factors influencing the position estimation performance. Furthermore, the position estimation performance is analyzed by calculating the current at the switching instant in several operating conditions. In summary, the half switching frequency injection is more robust to the nonideal characteristics of IPMSM, especially with light load condition. The validity of the analysis is verified by the simulation and experimental results.

Analysis and Control of A Fixed Frequency LCL-type Isolated Bidirectional Converter (고정주파수 LCL타입 절연형 양방향 컨버터 해석 및 제어)

  • Park, Sangeun;Cha, Hanju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.65-72
    • /
    • 2016
  • This paper discussed the LCL-type & Isolated bidirectional dc-dc converter(BDC) with dual full bridge inverter. In order to verify the analysis of the BDC, Experimental prototype has been designed and implemented to supply constant voltage regardless of loads and proposed a method to select switching frequency that depended on two inductors' inductance ratio and transformer parameters. The proposed converter has been composed of LCL resonant network with unit inductance ratio ($L_r/L_f$=1) and then operated with fixed duty, 50% duty ratio and fixed frequency. There are some characteristics that input voltage and output voltage of the BDC is nearly identical and zero voltage turn-on switching is possible in forward and reverse mode. Finally, it has been showed that BDC is possible to commutate operating mode normally and provide constant output voltage in selected switching frequency.

The speed control of induction motor using neural networks (신경회로망을 이용한 유도전동기 속도제어)

  • 김세찬;원충연
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.42-53
    • /
    • 1996
  • The paper presents a speed control system of vector controlled induct- ion motor using neural networks. The main feature of proposed speed control system is a Neural Network Controller(NNC) which supplies torque current to induction motor and Neural Network Emulator(NNE) which captures the forward dynamics of induction motor. A back propagation training algorithm is employed to train the NNE and NNC. In order to determine the NNC output error, plant(induction motor) output error can be back propagated through the NNE. The NNC and NNE for speed control of vector controlled induction motor is carried out by TMS320C30 DSP and IGBT current regulated PWM inverter. Through computer simulation and experimental results, it is verified that proposed speed control system is robust to the load variation. (author). refs., figs.

  • PDF

A 2nd Order Harmonic Compensation Method for Wind Power System Using a PR Controller

  • Jeong, Hae-Gwang;Lee, Jong-Hyun;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.507-515
    • /
    • 2013
  • This paper proposes a compensation method for the $2^{nd}$-order harmonic of single-phase grid-connected wind power generation systems. Theoretically, a single-phase grid-connected inverter system has no choice but to cause the $2^{nd}$-order harmonic to DC-link voltage. The reference active current is affected by the DC-link voltage. The output current from the reference active current is distorted by the $1^{st}$ and $3^{rd}$-order harmonic. The proposed method can compensate, conveniently, the reference active current with the $2^{nd}$-order harmonic. To reduce the $2^{nd}$-order ripple in the reference active current, proposed method takes a PR controller as a feed-forward compensator. PR controllers can implement selective harmonic compensation without excessive computational requirements; the use of these controllers simplifies the method. Both the simulation and experimental results agree well with the theoretical analysis.

Low Frequency Current Ripple Mitigation of Two Stage Three-Phase PEMFC Generation Systems

  • Deng, Huiwen;Li, Qi;Liu, Zhixiang;Li, Lun;Chen, Weirong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2243-2257
    • /
    • 2016
  • This paper presents a two stage three-phase proton exchange membrane fuel cell (PEMFC) generation system. When the system is connected to a three-phase load, it is very sensitive to the characteristics and type of the load. Especially unbalanced three-phase loads, which result in a pulsating power that is twice the output frequency at the inverter output, and cause the dc-link to generate low frequency ripples. This penetrates to the fuel cell side through the front-end dc-dc converter, which makes the fuel cell work in an unsafe condition and degrades its lifespan. In this paper, the generation and propagation mechanism of low frequency ripple is analyzed and its impact on fuel cells is presented based on the PEMFC output characteristics model. Then a novel method to evaluate low frequency current ripple control capability is investigated. Moreover, a control scheme with bandpass filter inserted into the current feed-forward path, and ripple duty ratio compensation based on current mode control with notch filter is also proposed to achieve low frequency ripple suppression and dynamic characteristics improvement during load transients. Finally, different control methods are verified and compared by simulation and experimental results.

A Canonical Small-Signal Linearized Model and a Performance Evaluation of the SRF-PLL in Three Phase Grid Inverter System

  • Mao, Peng;Zhang, Mao;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1057-1068
    • /
    • 2014
  • Phase-locked loops (PLL) based on the synchronous reference frame (SRF-PLL) have recently become the most widely-used for grid synchronization in three phase grid-connected inverters. However, it is difficult to study their performance since they are nonlinear systems. To estimate the performances of a SRF-PLL, a canonical small-signal linearized model has been developed in this paper. Based on the proposed model, several significant specifications of a SRF-PLL, such as the capture time, capture rang, bandwidth, the product of capture time and bandwidth, and steady-state error have been investigated. Finally, a noise model of a SRF-PLL has been put forward to analyze the noise rejection ability by computing the SNR (signal-to-noise ratio) of a SRF-PLL. Several simulation and experimental results have been provided to verify and validate the obtained conclusions. Although the proposed model and analysis method are based on a SRF-PLL, they are also suitable for analyzing other types of PLLs.