• Title/Summary/Keyword: Formulas

Search Result 2,336, Processing Time 0.024 seconds

Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading

  • Himeur, Nabil;Mamen, Belgacem;Benguediab, Soumia;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bouchouicha, Benattou;Bourada, Fouad;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.353-369
    • /
    • 2022
  • This study attempts to shed light on the coupled impact of types of loading, thickness stretching, and types of variation of Winkler-Pasternak foundations on the flexural behavior of simply- supported FG plates according to the new quasi-3D high order shear deformation theory, including integral terms. A new function sheep is used in the present work. In particular, both Winkler and Pasternak layers are non-uniform and vary along the plate length direction. In addition, the interaction between the loading type and the variation of Winkler-Pasternak foundation parameters is considered and involved in the governing equilibrium equations. Using the virtual displacement principle and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are computed. Finally, the non-dimensional formulas' results are validated with the existing literature, and excellent agreement is detected between the results. More importantly, several complementary parametric studies with the effect of various geometric and material factors are examined. The present analytical model is suitable for investigating the bending of simply-supported FGM plates for special technical engineering applications.

Zhang Jiebin(張介賓)'s Discussion and Treatment of the Depressive Pattern (장개빈(張介賓) 울증론치(鬱證論治) 연구)

  • Bae, Jeong-woon;Bak, Gi-ho;Lyu, Jeong-ah
    • Journal of Korean Medical classics
    • /
    • v.35 no.4
    • /
    • pp.77-96
    • /
    • 2022
  • Objectives : This paper examines the medical treatise and treatment methods of Zhang Jiebin on the depressive pattern, for clinical application today. Methods : The Zazhengmo/Yuzheng chapter of the Jingyue Quanshu, related texts and annotations of the Huangdineijing, and related contents among the medical texts of the JinYuan masters were analyzed. Developmental process of the medical theories were compared and examined. Results : Zhang focused on the mechanism in which emotion affects Qi leading to a disease state, and categorized Yu[鬱, depressed state] into three: anger depression, contemplative depression and comprehensive depression. The concept of the Five Depressive Patterns and its treatment from the Huangdineijing·Suwen which was considered as excess pattern was expanded to include deficiency pattern based on comparison with annotations of Wangbing, Hwashou, and Wang Andao. Treatment methods centered on purging was also expanded to include tonifying to restore the damaged Jing Qi. The depressive patterns anger depression, contemplative depression and comprehensive depression were subdivided according to excess and deficiency, for which formulas such as Shenxiangsan, Shoupijian, Guipitang were suggested. As the depressive pattern is caused by emotions and thus the Heart, the Yiqingbianqi method that directly deals with emotions was suggested. Zhang adopted Zhu Zhenheng's opinion which expands the category of Yu, and in the perspective of excess/deficiency, it is most similar to that of Li Dongyuan. Conclusions : Before Zhang, the depressive pattern was discussed in terms of it being excess pattern. However, Zhang's discussion on depressive pattern based on anger depression, contemplative depression and comprehensive depression focuses on emotional stagnation while suggesting the possibility of deficient stagnation, expanding previous understanding. In terms of treatment, tonifying methods for deficiency pattern was added, while consideration of emotion itself became necessary in treatment.

Development of Quantity Take-off Building Information Modeling System for Retaining Wall (객체 기반 물량 산출을 위한 흙막이 BIM 설계 시스템 구축)

  • Kang, SeoungWoo;Kim, Eun-Seok;Lee, Si-Eun;Kim, Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.197-205
    • /
    • 2022
  • In this paper, a retaining wall system, developed using building Information modeling (BIM), is presented. Based on the information from a literature review, elementary technologies for the system were defined and developed. First, for the elementary technology, BIM libraries were constructed using standards and previous study results to achieve versatility and reusability. Second, methods for determining the quantity take-off (QTO) of a retaining wall were reviewed for an earth-work calculating system. Additionally, inverse distance weighting interpolation was used to generate topography. Finally, four formulas for calculating the QTO were proposed and devised for each element. After its development, the BIM system was analyzed and verified through comparison with a two-dimensional drawing-based QTO. The proposed system is deemed to be practical for determining the QTO of retaining walls and earth works. The contributions and limitations of the research are discussed in this paper.

Development of Work Report for Evaluating KPIs of Truck Haulage Operation in Open Pit and Underground Mines (노천 및 지하 광산 트럭 운반 작업의 핵심성과지표 평가를 위한 작업 일지 개발)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.327-343
    • /
    • 2022
  • The standard work report for trucks was developed that records data on truck haulage operations in open-pit and underground mines, and to evaluate the performance of haulage operations. Work reports used in 5 mines in Korea was secured and analyzed, and items to be included in the standard work report were determined. By analyzing the formulas for key performance indicators (KPIs) proposed by the Global Mining Guidelines Group (GMG), it was possible to determine how to record time-related data. After selecting a limestone underground mine as a research area, the performance of haulage operations was evaluated using a standard work report. As a result, in terms of truck availability, uptime was 46.7%, and both physical and mechanical availability were 100%. In the case of utilization, use of availability was 88.2%, the asset utilization was 41.1%, and operating and effective utilization were 88.2% and 79.2%, respectively. Also, in terms of efficiency, operating efficiency was found to be 89.9%.

Stability investigation of symmetrically porous advanced composites plates via a novel hyperbolic RPT

  • S.R. Mahmoud;E.I. Ghandourah;A.H. Algarni;M.A. Balubaid;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Fouad Bourada
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.471-483
    • /
    • 2023
  • This paper presents an analytical hyperbolic theory based on the refined shear deformation theory for mechanical stability analysis of the simply supported advanced composites plates (exponentially, sigmoidal and power-law graded) under triangular, trapezoidal and uniform uniaxial and biaxial loading. The developed model ensures the boundary condition of the zero transverse stresses at the top and bottom surfaces without using the correction factor as first order shear deformation theory. The mathematical formulation of displacement contains only four unknowns in which the transverse deflection is divided to shear and bending components. The current study includes the effect of the geometric imperfection of the material. The modeling of the micro-void presence in the structure is based on the both true and apparent density formulas in which the porosity will be dense in the mid-plane and zero in the upper and lower surfaces (free surface) according to a logarithmic function. The analytical solutions of the uniaxial and biaxial critical buckling load are determined by solving the differential equilibrium equations of the system with the help of the Navier's method. The correctness and the effectiveness of the proposed HyRPT is confirmed by comparing the results with those found in the open literature which shows the high performance of this model to predict the stability characteristics of the FG structures employed in various fields. Several parametric analyses are performed to extract the most influenced parameters on the mechanical stability of this type of advanced composites plates.

An Action Research on the Teaching Fraction Computation Using Semi-concrete Fraction Manipulatives (분수교구를 활용한 분수연산지도 실행연구)

  • Jin, Kyeong-oh;Kwon, Sung-yong
    • Journal of the Korean School Mathematics Society
    • /
    • v.25 no.4
    • /
    • pp.307-332
    • /
    • 2022
  • This action research was carried out to help students learn fractions computation by making and using semi-concrete fraction manipulatives that can be used continuously in math classes. For this purpose, the researcher and students made semi-concrete fraction manipulatives and learned how to use these through reviewing the previously learned fraction contents over 4 class sessions. Afterward, through the 14 classes (7 classes for learning to reduce fractions and to a common denominator, 7 classes for adding and subtracting fractions with different denominators) in which the principle inquiry learning model was applied, students actively engaged in learning activities with fraction manipulatives and explored the principles underneath the manipulations of fraction manipulatives. Students could represent various fractions using fraction manipulatives and solve fraction computation problems using them. The achievement evaluation after class found that the students could connect the semi-concrete fraction manipulatives with fraction representation and symbolic formulas. Moreover, the students showed interest and confidence in mathematics through the classes using fraction manipulatives.

Experiments and theory for progressive collapse resistance of ECC-concrete composite beam-column substructures

  • Weihong Qin;Wang Song;Peng Feng;Zhuo Xi;Tongqing Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • To explore the effect of Engineered Cementitious Composite (ECC) on improving the progressive collapse resistance of reinforced concrete frames under a middle column removal scenario, six beam-column substructures were tested by quasistatic vertical loading. Among the six specimens, four were ECC-concrete composite specimens consisting of different depth of ECC at the bottom or top of the beam and concrete in the rest of the beam, while the other two are ordinary reinforced concrete specimens with different concrete strength grades for comparison. The experimental results demonstrated that ECC-concrete composite specimens can improve the bearing capacity of a beam-column substructure at the stages of compressive arch action (CAA) and catenary action in comparison with ordinary concrete specimen. Under the same depth of ECC, the progressive collapse resistance of a specimen with ECC at the beam bottom was superior to that at the beam top. With the increase of the proportion of ECC arranged at the beam bottom, the bearing capacity of a composite substructure was increased, but the increase rate slows down with the proportion. Meanwhile, the nonlinear numerical analysis software MSC Marc was used to simulate the whole loading process of the six specimens. Theoretical formulas to calculate the capacities of ECC-concrete composite specimens at the stages of flexural action, CAA and catenary action are proposed. Based on the research results, this study suggests that ECC should be laid out at the beam bottom and the layout depth should be within 25% of the total beam depth.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

Comparative Analysis of Water Absorption and Water Solubility of Alkasite-based Restorative Material

  • Myeong-Gwan Jih;Hye-Jin Cho;Eu-Jin Cha;Tae-Young Park
    • Journal of Korean Dental Science
    • /
    • v.16 no.1
    • /
    • pp.74-79
    • /
    • 2023
  • Purpose: Cention N (Ivoclar Vivadent) was a recently introduced alkasite-based restorative material that was expected to replace amalgam and glass ionomer cement. This material was an esthetic restoration with adequate mechanical strength and release of fluoride and calcium. The purpose of this study was to measure the water sorption and water solubility of Cention N and evaluate its long-term durability compared to other esthetic restorations (Resin-Modified Glass Ionomer cement [RMGIC], Giomer, Composite Resin). Materials and Methods: Twenty specimens each of Cention N (CN), Resin Modified-Glass Ionomer Cement (FJ), Giomer (BF), and Composite Resin (FZ) were made. After each specimen was completely dried in a desiccator for 24 hours using a vacuum pressure pump, the specimen was weighed (m1). After that, the specimen was immersed in distilled water at 37℃ for 7 days, stored in a drying oven, and weighed (m2). After drying completely for 24 hours in a desiccator, the specimen was weighed (m3) to calculate the water absorption and water solubility using Formulas 1 and 2. The measured values were statistically processed and analyzed using SPSS, and the significance level was set at 0.05. Result: When measuring water sorption, FJ (122.61 ㎍/mm3) showed significantly higher water sorption than CN (35.42 ㎍/mm3) (P<0.05). There was no significant difference between FZ (18.03 ㎍/mm3) and BF (14.76 ㎍/mm3) (P=0.930). When measuring water solubility, CN (6.65 ㎍/mm3) showed significantly higher water solubility than FJ (1.47 ㎍/mm3) (P<0.05). Conclusion: Cention N had lower water sorption than RMGIC, but higher water solubility, indicating that it is more vulnerable to moisture and has lessened long-term durability.

Network pharmacological analysis for identifying herbal medicine candidate for cerebral infarction focusing on Gardeniae Fructus (뇌경색 전임상 연구 후보 약재 선정을 위한 네트워크 약리학 분석법의 활용과 치자(梔子)의 적용 가능성 검토)

  • Jung Joohyun;Park Heejun;Lim Sehyun;Cho Suin
    • Herbal Formula Science
    • /
    • v.31 no.3
    • /
    • pp.145-156
    • /
    • 2023
  • Objectives : This study aimed to select candidate herbal medicines to be used in preclinical studies of cerebral infarction using the network pharmacology research method. Methods : Oral bioavailability (OB), drug likeness (DL), Caco-2, and blood-brain barrier (BBB) permeability were employed in this study's network pharmacology analysis method to choose compounds with potential efficacy. The following formulas were utilized for the values of each variable used in this study: OB ≥ 20%, DL ≥ 0.18, Caco-2 ≥ 0, and BBB ≥ -0.3. The relationships between target proteins and diseases that are assumed to be involved in the chosen bioavailable chemicals were built in a network manner using the aforementioned factors, and proteins thought to play a significant role were identified. Results : Sudan III was obtained as a result of selecting compounds related to ischemic stroke in consideration of pharmacokinetic characteristics such as digestion and absorption and practicality using the TCMSP database. Medicinal herbs Gardeniae Fructus (GF) contains sudan III, and it was confirmed that compounds in GF were highly related to brain diseases, and the mechanism involved through the KEGG pathway was confirmed. GF, which has sudan III related to ischemic stroke and is also involved in other neurological diseases, is expected to be used for ischemic stroke treatment. Conclusions : GF has been predicted to have potential for ischemic stroke treatment, and can be used for future preclinical studies.