• Title/Summary/Keyword: Forming effects

Search Result 1,340, Processing Time 0.025 seconds

Prediction of Forming Limit Diagram Using Plastic Instability Condition Considered Strain Rate. (변형율 속도를 고려한 소성불안정 조건을 이용한 성형한계선도의 예측)

  • 한규택;강대민;김진욱;백남주
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.58-65
    • /
    • 1990
  • The purpose of this study is to consider the effects of strain rate on the stress-strain behavior of sheet metal at instability. The results and conclusions obtained as follows : 1. As the strain rate increases, the fracture pressure increases and the polar height at fracture decreases. 2. The effect of strain rate on forming limit diagram produces a general lowering of the diagram with increasing strain rate but changes according to materials and strain paths. 3. The forming limit diagram predicted by swift instability theory is comparatively inconsistent with the experimental result at high strain rates, because there is inevitable gap between them.

  • PDF

A Study on Punch Load According to Blank Shape in Elliptical Cup Forming (타원용기 성형에서 블랭크 형상에 따른 펀치하중 변화에 관한 연구)

  • 박동환;허영민;강성수
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.235-245
    • /
    • 2001
  • Deep drawing process, one of sheet metal forming methods, is very useful in the industrial field because of its efficiency The deep drawing is affected by many process variables, such as blank shapes, shape radii of the punch and die, formability of materials and so on. Especially, blank shape is very important formability factor. In this study, in order to investigate the effects of blank shape, we suggested three kinds of blank shapes and examined friction test about three conditions. We measured punch load distribution according to punch stroke under the conditions of each punch and die shape radii and observed punch load of elliptical cup forming.

  • PDF

Consideration on Frictional Laws and their Effect on Finite Element Solutions in Bulk Metal Forming (체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰)

  • Joun, M.S.;Moon, H.K.;Hwang, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.102-109
    • /
    • 1996
  • Effects of frictional laws on finite element solutions in metal forming were investigated in this paper. A rigid-viscoplastic finite element formulation was given with emphasis on the frictional laws. The Coulomb friction and the constant shear friction laws were compared through finite element analyses of compression of rings and cylinders with different aspect ratios, ring-gear forging, multi-stage cold extrusion and hot strip rolling under the isothermal condition. It has been shown that two laws may yield quite different results when the aspect ratio of a process and the fractional contact region are large.

  • PDF

A Study on Developementof UBST Program for Axisymmetric Metal Forming Process (축대칭 성형공정에 대한 유동함수 상계요소법의 프로그램 개발에 관한 연구)

  • 김영호;배원병;박재우;엄태준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.124-130
    • /
    • 1995
  • An upper-bound elemental stream function technique(UBST) is proposed for solivng forging and backward extrusion problems that are geometrically complex or need a forming simulation . And in the forging problems, this study investigates that layer of elements effects dissipation of total energy and load. The element system of UBSTuses the curve fitting property of FEM and the fluid incompressiblity of the stream function . The foumulated optimal design problems with constraints ae solved by the flixible toerance method. In the closed-die forging and backward extrusion, the result of layer of element by this study produces a lower upper-bound solution than that fo UBET and conventional layer of element . And the main advantage of UBST program is that a computer code, once written , can be used for a large variety problems by simply changing the input data.

  • PDF

Comparison of Warm Deep Drawability of Stainless Sheet Between Crank Press and Hydraulic Press (크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교)

  • 김종호;최치수;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.178-185
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film made both in a crank and hydrqulic press for two kinds of specimens . The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydrqulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability , such as forming temperature, speed of press and cooling of punch are examinnied and discussed.

  • PDF

Consideration of Damping Effect on Sheet Metal Forming (판재 성형에 미치는 damping의 영향 고찰)

  • 이상욱;양동열;정완진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.188-191
    • /
    • 1997
  • In the recent sheet metal forming simulations, it increases to adopt the dynamic explicit method for an effective computation and the elastic-plastic formulation for stress recovery. It is inevitable in the dynamic explicit method that some noises occur and sometimes partly spoil results of simulations. It is severer when complicated contact conditions are included in simulations. An effective method to control these noises is introduction of damping effects. In this paper, the concept of contact damping is introduced in order to suppress noises due to complicated contact conditions. This is checked by analyzing a simple sheet metal forming process(U-bending). From the computational results, it is shown that the contact damping can effectively control the noises due to contacts and develop more reliable internal stress states.

  • PDF

Development of tube hydroforming technology (관재의 하이드로 포밍 기술개발)

  • 이택근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.30.2-34
    • /
    • 1999
  • The hydroforming technology has gained in importance over the last few years, because of its potential for substantial weight avings costs reduction and quality improvement such as collision property, shape fixability and rigidity of white body. However, in comparison with the traditional sheet forming process, the hydroforming is much younger and the main development efforts were made in the last 15 years. The new technology, high pressure tublar hydroforming in particular, involves many process parameters to be optimized. This paper covers a brief overview of the hydroforming simulator as well as design of die and tools. The effects of typical parameters such as internal pressure and axial compression stroke are presented. Moreover, the conditions of forming failure occurrences such as fracture and wrinkle are examinated.

  • PDF

Bending Characteristics of DP980 Steel Sheets by the Laser Irradiation (DP980강판의 레이저 조사에 따른 굽힘 변형특성 연구)

  • Song, J.H.;Zhang, Y.;Lee, J.S.;Park, S.J.;Choi, D.S.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.378-383
    • /
    • 2012
  • Laser forming is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. This is a new manufacturing technique that forms the metal sheet only by a thermal stress. Analyses of the temperature and stress fields are very important to identify the deformation mechanism in laser forming. In this paper, temperature distributions and deformation behaviors of DP980 steel sheets are investigated numerically and experimentally. FE simulations are first conducted to evaluate the response of a square sheet in bending. The effects of process parameters such as laser power and scanning speed are then analyzed numerically and experimentally. It is observed that experimental and numerical results are in good agreement. These results provide a relationship between the line energy and the angles for laser bending of DP980 steel sheets.

Effects of Transition Temperature and Atomic Ratio on Glass Formation Tendency in the PbO-B$_2$O$_3$-TiO$_2$-BaO System (PbO-B$_2$O$_3$-TiO$_2$-BaO계의 유리화에 대한 전이온도 및 성분 원소비의 영향)

  • 이선우;심광보;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1274-1279
    • /
    • 1998
  • The glass forming ability of the PbO-B2O3-TiO3-BaO system was investigated in relation to transitieon tem-peratures and the atomic ratio between constituents. Glass forming tendency was improved as the tem-peratures and the atomic ratio between constituents. Glass forming tendency was improved as the tem-perature differences between liquidus temperature and crystallization(or glass transition) temperature de-creased and the temperature difference between crystallization and glass transition temperature increases. The atomic ratio could be used as a criterion to deign glass systems. The interposition of B and Ba atoms between Pb and Ti atoms was one of important factors in glass formation.

  • PDF

Forming a Fresnel Zone Lens: Effects of Photoresist on Digital-micromirror-device Maskless Lithography with Grayscale Exposure

  • Huang, Yi-Hsiang;Jeng, Jeng-Ywan
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.127-132
    • /
    • 2012
  • This study discusses photoresist forming using a composite grayscale to fabricate a Fresnel lens. Grayscale lithography is a common production method used to facilitate the forming of lenses with different curvatures and depths. However, this approach is time consuming and expensive. This study proposes a method for overcoming these obstacles by integrating a digital micromirror device and microscope to supplant the traditional physical grayscale mask. This approach provides a simple and practical maskless optical lithography system. According to the results, the two adjacent grayscales displayed substantial differences between the high grayscale and influence the low grayscale that ultimately affected photoresist formation. Furthermore, we show that change of up to 150% in the slope can be achieved by changing the grayscale gradient in the central zone and the ring profile. The results of the optical experiment show a focus change with different gray gradients.