• Title/Summary/Keyword: Forming Tool

Search Result 474, Processing Time 0.029 seconds

Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method (반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

Frictional Contact Model for Finite Element Analysis of Sheet-Metal Forming Processes (박판 성형 공정의 유한요소 해석을 위한 마찰접촉 모델)

  • 금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2242-2251
    • /
    • 1993
  • The mesh-based frictional contact model has been developed which does not rely on the spatial derivatives of the tool surface. Only points on the surface are evaluated from the description. which can then be simplified because of the relaxed demands placed on it. The surface tangents, normals, and corresponding derivatives at each finite-element node are evaluated directly from the finite-element mesh, in terms of the connecting nodal positions. The advantages accrue because there is no longer a need for a smooth tool surface to assure reasonable normals and derivatives. Furthermore, it can be shown that the equilibrium equations can only be properly written with a special normal derived from the mesh itself. The validity, accuracy, computation time, and stability of mesh-based contact model were discussed with the numerical examples of rounded flat-top and rough, flat-top rounded punch forming operations. Also, the forming process of a automobile inner panel section was simulated for testing the robustness of new contact model. In the discussion, the superiority of new model was examined, comparing with tool-based contact one.

A Hierarchical Contact Searching Algorithm in Sheet Forming Analysis (박판성형공정해석에서의 계층적 접촉탐색 알고리즘 적용)

  • 김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.22-25
    • /
    • 1999
  • A dynamic explicit finite element code for simulating sheet forming processes has been developed The code utilises the discrete Kirchhoff shell element and contact force is treated by a conventional penalty method. In order to reduce the computational cost a new and robust contact searching algorithm has been developed and implemented into the code. in the method a hierarchical structure of tool segments called a tree structure is built for each tool at the initial stage of the analysis Tree is built in a way to divide a trunk to 8 sub-trunk 2 in each direction until the lowest level of the tree(leaf) contains exactly one segment of the tool. In order to have a well-balanced tree each box on each sub level contains one eighth of the segments. Then at each time step contact line from a node comes out of the surface of the tool. Simulation of various sheet forming processes were performed to verify the validity of the developed code with main focus on he usefulness of the developed contact searching algorithm.

  • PDF

Development of CAD/CAM system for dieless CNC forming (Dieless CNC Forming 을 위한 CAD/CAM 시스템 개발)

  • 최동우;진영길;강재관;왕덕현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.405-408
    • /
    • 2004
  • The sheet parts are formed with dies conventionally. But this conventional forming process is not suited to small volume and varied production for the reason of high cost. For the solution of this problem, a new forming process, which is called CNC incremental sheet forming, is being introduced. This process can form sheet parts without die, and is very well suited to small volume and varied production in space flight and automobile. In this paper, dieless CNC forming system based on a machining center is developed. A special device to grasp and pull the blank sheet built in the machining center and tool path generation S/W from STL file of 3-D model are developed. Several sheet parts are incrementally formed to verify the effectiveness of the developed system.

  • PDF

Dieless CNC Forming System based on a Machining Center (머시닝센터 기반의 Dieless CNC Forming 시스템 개발)

  • Choi D. W.;Kang J. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.184-187
    • /
    • 2004
  • The sheet parts are formed with dies conventionally. But this conventional forming process is not suited to small volume and varied production for the reason of high cost. For the solution of this problem, a new forming process, which is called CNC incremental sheet forming, is being introduced. This process can form sheet parts without die, and is very well suited to small volume and varied production in space flight and automobile. In this paper, dieless CNC forming system based on a machining center is developed. A special device to grasp and pull the blank sheet built in the machining center and tool path generation S/W from STL file of 3-D model are developed. Several sheet parts are incrementally formed to verify the effectiveness of the developed system.

  • PDF

Development of the Tube Press Forming Process for the CTBA of the Rear Suspension Assembly (후륜 현가장치용 CTBA 튜브 프레스 성형공정 개발)

  • Kim, S.H.;Kim, K.P.;Park, C.I.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.263-271
    • /
    • 2008
  • Process design is carried out for a press forming of a CTBA in the rear suspension assembly based on the result of the finite element analysis. The analysis simulates the two-stage stamping process with the initial design and it fully reveals the unfavorable mechanism which develops inferiorities during forming. In this paper, a new design guideline is proposed to modify the process and tool shapes for a single-stage forming process. With the improved tool design, prototypes are fabricated after several try-out processes. Results of the durability tests show that the design requirement of the part is satisfied and the effective weight reduction is achieved.

A parametric Study in Incremental Forming of Magnesium Alloy Sheet (인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구)

  • Park, J.G.;You, B.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.412-419
    • /
    • 2008
  • Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.

Contouring Tool Path Generation for Dieless CNC Forming (다이레스 CNC 포밍을 위한 등고선 공구경로 생성)

  • Kang J.K.;Jin Y.G.;Yun S.B.;Kang B.S.;Youm K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1753-1756
    • /
    • 2005
  • The sheet parts are formed with dies conventionally. But this conventional forming process is not suited to small volume and varied production for the reason of high cost. For the solution of this problem, a new forming process, which is called CNC incremental sheet forming, is being introduced. This process can form sheet parts without die, and is very well suited to small volume and varied production in space flight and automobile. In this paper, dieless CNC forming system based on a machining center is developed. A special device to grasp and pull the blank sheet built in the machining center and tool path generation S/W from STL file of 3-D model are developed. Several sheet parts are incrementally formed to verify the effectiveness of the developed system.

  • PDF

Prototype Manufacturing of a Brake Dust Shield by Dieless CNC Forming Technology (다이레스 포밍을 이용한 브레이크 더스트 쉴드 시작품 제작)

  • Kang, Jae-Gwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.36-43
    • /
    • 2007
  • Dieless CNC forming is an innovative technology which can form various materials with complex shape by numerically controlled incremental forming process. In order to apply the technology to industrial parts, however, many problems such as spring-back, rising of material, and trimming difficulty must be solved. In this paper a new dieless CNC forming method to improve forming quality is proposed, which consists of how to modify its original shape in CAD and how to generate its CNC tool path in CAM. The effectiveness of the proposed procedures is tested with a brake dust shield of a vehicle. The results shows that the method proposed enhances the forming quality up to 48% compared to traditional method.

  • PDF

Hot Forming and Heat Treatment of the End-Bulkhead of a Pressure Hull (압력선체 경판의 열간 성형 및 열처리에 관한 연구)

  • 권일근;윤영철;윤중근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.21-24
    • /
    • 2003
  • In hot forming process of the backward end-bulkhead of a pressure hull, the blank diameter and the tool clearance are the critical factors which influence wrinkling defect, forming load and shape completeness of the product. Two F.E.A softwares with the elasto-plastic material model and rigid plastic model were utilized to predict the occurrence of wrinkling defect. Tool clearance was determined by considering the increase of blank thickness, die strength and the stretching effect. Heat treatment condition after the hot forming to recover the original properties of the material was estabilished by specimen-based heat treating experiment.

  • PDF