• 제목/요약/키워드: Forming Simulation

검색결과 838건 처리시간 0.025초

복동금형을 이용한 돌기성형공정에 관한 유한요소해석 (FE Analysis on the Serrated Forming Process using Multi-action Pressing Die)

  • 장동환;함경춘;고병두
    • 소성∙가공
    • /
    • 제17권6호
    • /
    • pp.429-435
    • /
    • 2008
  • In this paper, the serrated forming process is analyzed with finite element method. The seal should secure the overlapping portions of ligature, which has teeth for ligature to prevent from slipping each other after clamping. In the simulation, rigid-plastic finite element model has been applied to the serration forming process. Serration or teeth forming characteristics has been analyzed numerically in terms of teeth geometry based on different forming conditions. Analyses are focused to find the influence of different die movements and geometries on the tooth geometry, which is crucial for securing overlapping portions of ligature. Two major process variables are selected, which are the face angle and entry angle of punch, respectively. Extensive investigation has been performed to reveal the influences of different entry and face angles on the geometry of teeth formation in the simulation. Three different face angles of punch have been selected to apply to each simulation of serrated sheet forming process with every case of punch entry angles. Furthermore, tooth geometries predicted from simulation have been applied to the indention process for comparing proper tooth geometries to secure the sealing.

등가 드로오비드를 적용한 Front Side Member의 성형해석 및 충돌평가 (Forming Analysis of the Front Side Member using Equivalent Draw-bead for Crashworthness Assessment)

  • 송정한;김기풍;김승호;허훈;김현섭;홍석길
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.320-327
    • /
    • 2003
  • This paper is concerned with forming analysis of Front Side Members and effects of the forming analysis on crash analysis of an auto-body. For efficient forming analysis, equivalent draw-bead restraining forces are calculated with ABAQUS/Standard and then used as the boundary condition in forming simulation. In order to demonstrate the validity of the forming analysis, the thickness variation in the numerical simulation result is compared quantitatively with the one in the real product. Forming histories obtained kom the forming analysis are utilized as the initial condition of the crash analysis for accurate assessment of the crashworthiness. Crashworthiness such as the load-carrying capacity, crash mode and the energy absorption is evaluated and investigated for the identification of forming effects.

가변성형공정에서 성형성 향상을 위한 해석 및 실험적 연구 (Numerical and Experimental Study for Improvement of Formability in Flexible Forming Process)

  • 허성찬;서영호;강범수;김정
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.432-440
    • /
    • 2012
  • In this article, the design of the flexible forming process considering die shape compensation using an iterative over-bending method based on numerical simulation was conducted. In this method, the springback shape obtained from the final step of the first forming simulation is compared with the desired objective shape, and a shape error is calculated as a vector norm with three-dimensional coordinates. The error vector is inversely added to the objective surface to compensate both the upper and lower flexible die configurations. The flexible die shapes are recalculated and the punch arrays are adjusted according to the over-bent forming surface. These iterative procedures are repeated until the shape error variation converges to a small value. In addition, experimental verification was conducted using a 2000-kN flexible forming apparatus for thick plates. Finally, the configuration of the prototype obtained from the experiment was compared with the numerical simulation results, which had springback compensation. It is confirmed that the proposed method for compensating for the forming error could be used in the design of flexible forming of thick-curved plates.

전.후방 캔 압출공정의 성형특성 연구 (A Study on the Forming Characteristics of Forward and Backward Extrusions)

  • 심지훈;최호준;옥정한;함병수;황병복
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.86-92
    • /
    • 2005
  • In this paper a forward-backward can extrusion process are analyzed by using rigid-plastic FEM simulation. FEM simulation is conducted to investigate forming characteristics such as deformation modes fur different process parameters. Design parameters such as thickness ratio, punch angle, friction factor and diameter ratio are selected to study the effect of them on the pattern of material flow. The analysis is focused mainly on the influences of the design factors on deformation pattern in terms of forming load, extruded length ratio and volume ratio. It is known for the simulation that the forming load, the length ratio and the volume ratio increase as the thickness ratio (TR), the wall thickness in forward direction to that in backward direction, decreases. The various punch angles have slight influence on the forming load. length ratio and volume ratio. However friction factor have little effect on the forming characteristics such as the forming load, volume ratio and so on. In addition the forming load increases as diameter ratio (DR), the outer diameter of a can in forward direction to that in backward direction, increases. Furthermore the extruded length ratio is lowest with a certain value of DR=0.85 among diameter ratios. Pressure distribution exerted on the die-material interface is illustrated schematically.

열간가스성형용 알루미늄 개발 합금 공정 조건에 관한 연구 (Study on an Aluminum Modified Alloy and Manufacturing Conditions for Hot Metal Gas Forming)

  • 이경민;고건영;이현철;김동옥;이윤교;김정섭;송종호
    • 소성∙가공
    • /
    • 제26권4호
    • /
    • pp.222-227
    • /
    • 2017
  • In order to respond to environmental regulations and increased demand for fuel economy, the demand for lightweight car bodies has grown. Hydroforming of aluminum is one possible solution as it eliminates the need for additional welding to develop closed cross-sectional parts. However, the low formability of aluminum is a limitation of its application. On the other hand, the ductility of materials can be improved at higher temperatures, and hot metal gas forming has been widely applied in the production of lightweight vehicle parts. In this study, aluminum alloy for pipe extrusion was developed by controlling the Mg:Cr:Mn ratio based on AA5083. Mechanical properties of the developed material were examined by tensile test and were applied to a forming simulation. Cold forming simulation for preforming and non-isothermal hot forming simulation for hot metal gas forming were carried out to validate process conditions. A prototype of the sidemember was manufactured under the given process condition. Finally, thickness distribution was compared with finite element analysis results.

Forming Simulation and Experiment for Progressive Fabrication Process of Inner Fin in Heat Exchanger

  • Ji, Dong-Hyeok;Jung, Dae-Han;Jin, Chul-Kyu
    • 한국산업융합학회 논문집
    • /
    • 제22권4호
    • /
    • pp.405-413
    • /
    • 2019
  • In this study, a progressive process was performed to fabricate the inner fin of a high-efficiency heat exchanger. A forming simulation was also carried out on the concavo-convex of the inner fin, forming a simulation based on elastic-plastic finite element method. The forming analysis where the speed of the press descended and ascended was set to five seconds showed that the effective stress was at a maximum of about 69 MPa in the curved portion where the bending occurred. Therefore, the die was designed based on the simulation results, and the inner fin die was installed on the 400-ton capacity press. After that, the inner fin fabrication experiment was conducted under the same condition as the simulation. Crack was not found from the curved portion of the concavo-convex of the inner fin. The profile of the concavo-convex of the prepared inner fin measured 6.7~6.8 mm in depth, 2.65~2.7 mm in width, and 0.3 mm in thickness.

축대칭 디프드로잉 공정의 웹 기반 해석시스템 개발 (Development of A Web-based Simulation System for Axi-Symmetric Deep Drawing)

  • 정완진
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.550-557
    • /
    • 2003
  • In this study, a web-based system was developed by utilizing finite element method and virtual system designed using Virtual Reality Modeling Language (VRML). The simulation program for axi-symetric sheet forming is developed using finite flement method. The developed system consists of two modules, client module and server module. The client module was developed by using Active-X control. The input data for FEM calculation is transferred to the server module by using communication protocol. Then sever module performs several successive processes: input data generation, forming simulation, conversion of results to VRML format. After that, the results from the simulation can be visualized on the web browser in client computer. Besides, client module offers the capability to control and navigate on virtual forming machine and calculated result. By using this system simulation result can be investigated more realistically in virtual environment including forming machine.

B.T.Pin을 이용한 치형부품의 측면 냉간성형공법 개발 (Development of Side Forming Technology for the Tooth Part Using B.T.Pin in Cold Forming Process)

  • 이진수;박세제;김병민;김동환
    • 소성∙가공
    • /
    • 제26권2호
    • /
    • pp.95-100
    • /
    • 2017
  • In this study, the method of process design for side forming of a tooth part used for a component of automobile transmission was suggested using FE-simulations. To develop the side forming for the tooth part, in this paper, the shape factors of B.T.Pin was considered as design parameters. The shape factors of B.T.Pin were selected to be the round of pin, reinforced angle and reinforced length. Based on FE simulation results, appropriate shape factor without causing any defects was selected. In addition, to increase the strength of pin, the combination of shape factor having minimum stress after side forming was selected using FE-simulation. In addition, with design of a die set, cold side forming of the tooth part was experimented to estimate effectiveness of the designed B.T.Pin. From experiments, it was found that the tooth part with complete formation of the tooth was obtained without making any forming defects and punch fracture.

PC기반 소성가공공정 성형해석 시스템 개발 (Development of PC-based Simulation System for Metal Forming)

  • 곽대영;천재승;김수영;이근안;임용택
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.233-241
    • /
    • 2000
  • It is well known that the quality and efficiency of the design of metal forming processes can be significantly improved with the aid of effective numerical simulations. In the present study, a two-and three-dimensional finite element simulation system, CAMP form, was developed for the analysis of metal forming processes in the PC environment. It is composed of a solver based on the thermo-rigid-viscoplastic approach and graphic user interface (GUI) based pre-and post-processors to be used for the effective description of forming conditions and graphic display of simulation results, respectively. In particular, in the case of CAMPform 2D (two-dimensional), as the solver contains an automatic remeshing module which determines the deformation step when remeshing is required and reconstructs the new mesh system, it is possible to carry out simulations automatically without any user intervention. Also, the forming analysis considers ductile fracture of the workpiece and wear of dies for better usage of the system. In the case of CAMPform 3D, general three-dimensional problems that involve complex die geometries and require remeshing can be analyzed, but full automation of simulations has yet to be achieved. In this paper, the overall structure and computational background of CAMPform will be briefly explained and analysis results of several forming processes will be shown. From the current results, it is construed that CAMPform can be used in providing useful information to assist the design of forming processes.

  • PDF

가변 스트레치 성형공정을 활용한 건축외피 구조물의 비정형 곡면 제작 (Manufacture of Architectural Skin-structure with a Double Curved Surface Using Flexible Stretch Forming)

  • 박지우;김유범;김정;김광호;강범수
    • 소성∙가공
    • /
    • 제22권4호
    • /
    • pp.196-203
    • /
    • 2013
  • Flexible stretch forming is an appropriate process for manufacturing of components for aerospace, shipbuilding and architecture structures. Flexible stretch forming has several advantages including that it could be applied to form various shapes such as ones with double curved surfaces. In this study, a systematic numerical simulation was conducted for forming double curved surfaces using flexible stretch forming. The desired surface had a saddle type configuration. It had two radii one of 2500mm and the other of 2000mm along its length and width. In the simulation, the decrease of elastic recovery due to the stretching was confirmed. Experiments were also conducted to confirm the viability of the process. By comparing the simulation to the experiment results, the suitability of flexible stretch forming for double curved surfaces was verified. From the results, the maximum error from desired surface was confirmed at about 1.3mm at the edge of the surface. Hence, it is confirmed that flexible stretch forming has the capability and feasibility to manufacture curved surfaces for architectural skin-structures of buildings.