• Title/Summary/Keyword: Forming Parameter

Search Result 191, Processing Time 0.025 seconds

Application of adaptive neuro-fuzzy system in prediction of nanoscale and grain size effects on formability

  • Nan Yang;Meldi Suhatril;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.155-164
    • /
    • 2023
  • Grain size in sheet metals in one of the main parameters in determining formability. Grain size control in industry requires delicate process control and equipment. In the present study, effects of grain size on the formability of steel sheets is investigated. Experimental investigation of effect of grain size is a cumbersome method which due to existence of many other effective parameters are not conclusive in some cases. On the other hand, since the average grain size of a crystalline material is a statistical parameter, using traditional methods are not sufficient for find the optimum grain size to maximize formability. Therefore, design of experiment (DoE) and artificial intelligence (AI) methods are coupled together in this study to find the optimum conditions for formability in terms of grain size and to predict forming limits of sheet metals under bi-stretch loading conditions. In this regard, a set of experiment is conducted to provide initial data for training and testing DoE and AI. Afterwards, the using response surface method (RSM) optimum grain size is calculated. Moreover, trained neural network is used to predict formability in the calculated optimum condition and the results compared to the experimental results. The findings of the present study show that DoE and AI could be a great aid in the design, determination and prediction of optimum grain size for maximizing sheet formability.

Star-forming Dwarf Galaxies in Filamentary Structures around the Virgo Cluster

  • Rey, Soo-Chang;Chung, Jiwon;Kim, Suk;Lee, Youngdae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.69.3-70
    • /
    • 2021
  • We present the chemical properties of star-forming dwarf galaxies (SFDGs) in five filamentary structures (Leo II A, Leo II B, Leo Minor, Canes Venatici, and Virgo III) around the Virgo cluster using the Sloan Digital Sky Survey optical spectroscopic data and Galaxy Evolution Explorer ultraviolet photometric data. We investigate the relationship between stellar mass, gas-phase metallicity, and specific star formation rate (sSFR) of SFDGs in the Virgo filaments in comparison to those in the Virgo cluster and field. We find that, at a given stellar mass, SFDGs in the Virgo filaments show lower metallicity and higher sSFR than those in the Virgo cluster on average. We observe that SFDGs in the Virgo III filament show enhanced metallicities and suppressed star formation activities comparable to those in the Virgo cluster, whereas SFDGs in the other four filaments exhibit similar properties to the field counterparts. Moreover, about half of the galaxies in the Virgo III filament are found to be morphologically transitional dwarf galaxies that are supposed to be on the way to transforming into quiescent dwarf early-type galaxies. Based on the analysis of the galaxy perturbation parameter, we propose that the local environment represented by the galaxy interactions might be responsible for the contrasting features in "chemical pre-processing" found in the Virgo filaments.

  • PDF

Optimization Design of the Clinch Stud using the Finite Element Analysis and the Taguchi Method (유한요소해석과 다구찌 방법을 이용한 클린치 스터드의 설계 최적화)

  • Byun, Hong-Seok;Kim, Gang-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3135-3141
    • /
    • 2013
  • This study derives the optimal conditions for design parameters of clinch stud with high torque resistance and bonding force by using FE simulation and Taguchi method. Maximum forming load and filled rate of material are considered as objective functions. Height and depth of groove with diameter and depth of lobe are chosen as design parameters. These control factors and the friction considered as noise factor are combined by orthogonal array. Forming load and filled rate are evaluated through the simulation. Simulation results are analyzed by using the ratio of signal to noise through Taguchi method. From these results, their optimal combination conditions are proposed. In the order of the most important parameter which affects filled rate, there are the height of lobe, the height of groove, the radius of lobe and the depth of groove.

Task Sequence Optimization for 6-DOF Manipulator in Press Forming Process (프레스 공정에서 6자유도 로봇의 작업 시퀀스 최적화)

  • Yoon, Hyun Joong;Chung, Seong Youb
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.704-710
    • /
    • 2017
  • Our research team is developing a 6-DOF manipulator that is adequate for the narrow workspace of press forming processes. This paper addresses the task sequence optimization methods for the manipulator to minimize the task-finishing time. First, a kinematic model of the manipulator is presented, and the anticipated times for moving among the task locations are computed. Then, a mathematical model of the task sequence optimization problem is presented, followed by a comparison of three meta-heuristic methods to solve the optimization problem: an ant colony system, simulated annealing, and a genetic algorithm. The simulation shows that the genetic algorithm is robust to the parameter settings and has the best performance in both minimizing the task-finishing time and the computing time compared to the other methods. Finally, the algorithms were implemented and validated through a simulation using Mathworks' Matlab and Coppelia Robotics' V-REP (virtual robot experimentation platform).

Stress-Based Springback Reduction of an AHSS Front Side Member (고강도강 프런트 사이드멤버의 응력분포 최적화를 통한 스프링백 저감)

  • Song J.H.;Kim S.H.;Park S.H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.295-303
    • /
    • 2006
  • Optimization is carried out to determine process parameters which reduce the amount of springback and improve shape accuracy of a deep drawn product in sheet metal forming process. The study uses the amount of stress deviation along the thickness direction in the deep drawn product as an indicator of springback instead of springback simulation. The scheme incorporates with an explicit elasto-plastic finite element method for calculation of the final shape and the stress deviation The optimization method adopts the response surface method in order to seek for the optimum condition of process parameters such as the blank holding force and the draw-bead force. The present scheme is applied to design of the variable blank holding force in an U-draw bending process and the application is further extend ε d to the design of draw-bead force in a front side member formed with advanced high strength steel (AHSS) sheets of DP60. Results show that design of process parameter is well performed to decrease the stress deviation through the thickness and to reduce the amount of springback. The present analysis provides a guideline in a design stage for controlling the springback based on the finite element simulation of the complicated parts.

The Vertical Disk Structure and Star Formation in Nearby Edge-On Galaxies

  • Yim, Kijeong;Wong, Tony;Rand, Richard;Rosolowsky, Erik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.31.3-32
    • /
    • 2016
  • We present the radial variations of the scale heights and the vertical velocity dispersions in a sample of nearby edge-on galaxies using BIMA/CARMA $^{12}CO$ ($J=1{\rightarrow}0$), VLA/EVLA HI, and Spitzer $3.6{\mu}m$ data. Both the disk thicknesses and the velocity dispersions of gas and stars vary with radius, contrary to assumptions of previous studies. We investigate how the interstellar gas pressure and the gravitational instability parameter differ from values derived assuming constant velocity dispersions and scale heights. Using the measurement of the disk thicknesses and the derived radial profiles of gas and stars, we estimate the corresponding volume densities. The gravitational instability parameter Q follows a fairly uniform profile with radius and is ${\geq}1$ across the star-forming disk. The star formation law has a slope that is significantly different from those found in more face-on galaxy studies. The midplane gas pressure appears to roughly hold a power-law correlation with the midplane volume density ratio (${\rho}_{H2}/{\rho}_{HI}$).

  • PDF

A study on wear damage of SKD11 steel material for a cutting mold jig (SKD11 절단금형치구용 소재의 마모손상에 관한 연구)

  • Nam, Ki-Woo;Kim, Cheol-Su;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.5-13
    • /
    • 2016
  • This study is on wear damage of the material for a molding machine that be used at finally cutting of metal beam made in roll forming process of vehicle bump beam process line. SKD11 steel was used with the material for cutting mold jig. In the cutting mold jig, Ti diffusion heat treatment after vacuum heat treatment was carried out for upgrade of surface hardness and anti-wear. Also, the heat treatments by various methods were performed to compare the wear damage degree against above the existing heat treatment. Wear loss and friction coefficient were obtained from wear test. And, micro Vickers hardness values were compared with damaged parts or not of cutting mold jig. Micro Vickers hardness value appeared higher at the undamaged part by Ti diffusion heat treatment. The micro Vickers hardness well followed a two-parameter Weibull probability distribution.

Evaluation of the Product Quality According to Intermesh of the Roller Straightening Process of Steel Cord (스틸코드 롤러교정공정의 압하량에 따른 교정도 평가)

  • Bae, G.H.;Lee, J.S.;Huh, H.;Lee, J.W.;Lee, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.271-274
    • /
    • 2009
  • This paper deals with an evaluation of the product quality according to intermesh of the roller straightening process of a steel cord. To perform the experiments, a single-layered steel cord with three wires is selected as a target. Intermeshes at inlet and outlet of the roller straightening device are selected as a respective design parameter. According to two intermeshes of the roller straightening device, a design table is generated and experiments were performed. Three assessment items of the product quality, such as the residual torsion, the arc-height and the pre-forming ratio, are measured in each experimental case for the quantitative evaluation of a steel cord. Based on the measured data, the sensitivity of two intermeshes was analyzed and the prediction equation for the product quality of a steel cord was also constructed from the regression analysis.

  • PDF

The dynamic explicit analysis of auto-body panel stamping process and investigating parameter affects of dynamic analysis (차체판넬 스템핑공정의 동적 외연적해석과 동적해석에 미치는 영향인자 분석)

  • Jung, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.380-390
    • /
    • 1998
  • In the present work a finite element formulation using dynamic explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and direct trial-and-error method. In this work, for economic analysis the faster punch velocity and the mass scaling method are introduced. To investigate the effects of punch velocity and mass scaling, the various values of punch velocity and the various mass scalings are used for numerical analysis. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oil pan and a fuel tank.

A Study on the Injection Molding Process for Manufacturing of Alternator Pulley (얼터네이터 풀리의 제조를 위한 사출성형공정에 관한 연구)

  • 민병현;김영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • So far, an alternator pulley has been formed by cold forging and casting with a metal due to the necessity of its high strength. Various advantages such as the light weight, the low cost, and the high productivity can be obtained by the injection molding process using engineering plastics. Engineering plastics have an excellent performance in the characteristics off strength vs. weight, a good forming ability and a productivity. The object of this study is to develop an alternator pulley, which has been made with a metal, using the injection molding process based on Taguchi methods. A sink mark is considered as a characteristic parameter to improve the quality. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.