• Title/Summary/Keyword: Formation and growth mechanisms

Search Result 175, Processing Time 0.02 seconds

High Temperature Fracture Mechanisms in Monolithic and Particulate Reinforced Intermetallic Matrix Composite Processed by Spray Atomization and Co-Deposition (분무성형공정에 의한 세라믹미립자 강화형 금속간화합물 복합재료의 고온파괴거동)

  • Chung, Kang;Kim, Doo-Hwan;Kim, Ho-Kyung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1713-1721
    • /
    • 1994
  • Intermetallic-matrix composites(IMCs) have the potential of combing matrix properties of oxidation resistance and high temperature stability with reinforcement properties of high specific strength and modulus. One of the major limiting factors for successful applications of these composite at high temperatures is the formation of interfacial reactions between matrix and ceramic reinforcement during composite process and during service. The purpose of the present investigation is to develop a better understanding of the nature of creep fracture mechanisms in a $Ni_{3}Al$ composite reinforced with both $TiB_{2}$ and SiC particulates. Emphasis is placed in the roles of the products of the reactions in determining the creep lifetime of the composite. In the present study, creep rupture specimens were tested under constant ranging from 180 to 350 MPa in vacuum at $760^{\cric}C$. The experimental data reveal that the stress exponent for power law creep for the composite is 3.5, a value close to that for unreinforced $Ni_{3}Al$. The microstructural observations reveal that most of the cavities lie on the grain boundaries of the $Ni_{3}Al$ matrix as opposed to the large $TiB_{2}/Ni_{3}Al$ interfaces, suggesting that cavities nucleate at fine carbides that lie in the $Ni_{3}Al$ grain boundaries as a result of the decomposition of the $SiC_{p}$. This observation accounts for the longer rupture times for the monolicthic $Ni_{3}Al$ as compared to those for the $Ni_{3}Al/SiC_{p}/TiB_{2} IMC$. Finally, it is suggested that creep deformation in matrix appears to dominate the rupture process for monolithic $Ni_{3}Al$, whereas growth and coalescence of cavities appears to dominate the rupture process for the composite.

Characteristics of film-type crystal growth mechanism of CO2 hydrate (CO2 하이드레이트의 film형 결정성장 거동에 관한 연구)

  • Lee, Hyunju;Kim, Soomin;Lee, Ju-Dong;Kim, Yangdo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Many researches have been carried out to reduce and/or to capture the major global warming gases. Especially, the hydrate formation mechanisms were intensively investigated for carbon dioxide sequestration and storage process applications. In this study, the characteristics of film-type crystal growth mechanism of carbon dioxide hydrate were comprehensively examined. Carbon dioxide hydrate crystal was formed in semi-batch type stir reactor at various pressure conditions while the temperature was fixed to be constant to reduce and minimize the guest gas solubility effects. A supply gas composition was 99.999 % of Carbon dioxide, the observation data was collected by optical microscope adopted CCD camera (Nikon DS-5M/Fi1/2M-U2). This study revealed that the guest gas pressure changes significantly altered the crystal growth mechanism and film growth rate of carbon dioxide hydrate crystal. The critical pressure of the carbon dioxide hydrate of crystal growth mechanism change was found to be 2.0 MPa. The capillary force and gas concentration gradient also significantly changed the film-type crystal growth mechanism of carbon dioxide hydrate crystal.

Mesenchymal Smad4 mediated signaling is essential for palate development (구개 형성과정에서 간엽 내 Smad4 매개 신호전달의 역할)

  • Yoon, Chi-Young;Baek, Jin-A;Cho, Eui-Sic;Ko, Seung-O
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.6
    • /
    • pp.460-465
    • /
    • 2010
  • Introduction: A cleft palate is a common birth defect in humans with an incidence of 1/500 to 1/1,000 births. It appears to be caused by multiple genetic and environmental factors during palatogenesis. Many molecules are involved in palate formation but the biological mechanisms underlying the normal palate formation and cleft palate are unclear. Accumulating evidence suggests that transforming growth factor $\beta$/bone morphogenetic proteins (TGF-$\beta$/BMP) family members mediate the epithelial-mesenchymal interactions during palate formation. However, their roles in palatal morphogenesis are not completely understood. Materials and Methods: To understand the roles of TGF-$\beta$/BMP signaling in vivo during palatogenesis, mice with a palatal mesenchyme- specific deletion of Smad4, a key intracellular mediator of TGF-$\beta$/BMP signaling, were generated and analyzed using the Osr2Ires-Cre mice. Results: The mutant mice were alive at the time of birth with open eyelids and complete cleft palate but died within 24 hours after birth. In skeletal preparation, the horizontal processes of the palatine bones in mutants were not formed and resulted in a complete cleft palate. At E13.5, the palatal shelves of the mutants were growing as normally as those of theirwild type littermates. However, the palatal shelves of the mutants were not elevated at E14.5 in contrast to the elevated palatal shelves of the wild type mice. At E15.5, the palatal shelves of the mutants were elevated over the tongue but did not come in contact with each other, resulting in a cleft palate. Conclusion: These results suggest that mesenchymal Smad4 mediated signaling is essential for the growth of palatal processes and suggests that TGF-$\beta$/BMP family members are essential regulators during palate development.

Anodic Oxidation Treatment Methods of Metals (금속의 양극산화처리 기술)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

Proteomic and Phenotypic Analyses of a Putative YggS Family Pyridoxal Phosphate-Dependent Enzyme in Acidovorax citrulli

  • Lynn Heo;Yongmin Cho;Junhyeok Choi;Jeongwook Lee;Yoobin Han;Sang-Wook Han
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.235-244
    • /
    • 2023
  • Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.

Characteristics of sulfur hexafluoride hydrate film growth at the vapor/liquid interface (기상/액상 계면에서의 SF6 하이드레이트 필름 성장거동 연구)

  • Kim, Soo-Min;Lee, Hyun-Ju;Lee, Bo-Ram;Lee, Yoon-Seok;Lee, Eun-Kyung;Lee, Ju-Dong;Kim, Yang-Do
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • $SF_6$ gas has been widely used in many industrial fields as insulating, cleaning and covering gases due to its outstanding arc-extinguishing and insulating properties. However, global warming potential of $SF_6$ gas is 23,900 times more than that of $CO_2$ and it remains in the air during 3,200 years. For these reason, technological and economical effects could be expected for the separation of $SF_6$ from gas mixtures by hydrate forming process. In this study, we carried out morphological studies for the $SF_6$ hydrate crystal to understand its formation and growth mechanisms. $SF_6$ hydrate film was initially formed at the interfacial boundary between gas and liquid regions, and then subsequent dendrite crystals growth was observed. The dendrite crystals grew to the direction of gas region probably due to the guest gas concentration gradient. The detailed growth characteristics of $SF_6$ hydrate crystals such as nucleation, migration, growth and interference were discussed in this study.

THE EFFECT OF GROWTH FACTORS IN PLATELET-RICH PLASMA ON THE ACTIVITY OF OSTEOBLAST CELL LINE (혈소판농축혈장 내의 성장요소가 조골세포주의 활성도에 미치는 영향)

  • Jung Tae-Wook;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.175-191
    • /
    • 2004
  • Statement of problem: Platelet-rich plasma(PRP) is well known to be very effective method to stimulate and accelerate the healing of bone and soft tissue. However, there are few reports which deal with the mechanisms of the PRP on the activation of the osteoblasts. Purpose: This study was aimed to investigate the effect of growth factors in PRP on the activity of osteoblasts. Material and method: To evaluate the effect on human, human osteoblast cell line was cultured. PRP was extracted from the blood of a healthy volunteer. Using the recombinant growth factors of PDGF, $TGFT-\beta$, IGF-1, bFGF which are mainly found at bone matrix and their neutralizing antibody, the effect of PRP on the attachment and proliferation of osteoblasts was evaluated. To evaluate the autocrine and paracrine effects, conditioned media(CM) of PRP was made and compared with PRP. By the western blot analysis, the expression of growth factors in PRP, CM was examined. Cell morphology was compared by the light microscope. Results : 1) The effects of CM on osteoblast were similar to the effects of PRP. 2) PRP, CM, recombinant $TGF-\beta$, bFGF, IGF-1 showed significantly higher cellular attachment than control(p<0.05) in the cell attachment assay. In the cell proliferation assay, PRP, CM, recombinant $TGF-\beta$, IGF-1, bFGF, PDGF increased significantly cell proliferation(p<0.01). Among the recombinant growth factors, IGF-1 showed the highest cellular attachment and proliferation. 3) In the western blot assay, bFGF, IGF-1, PDGF weve equally expressed in PRP and CM. 4) The attachment of osteoblast cell decreased significantly after the addition of neutralizing antibody against $TGF-\beta$, IGF-1(p<0.05). In the cell proliferation assay, the addition of neutralizing antibody against $TGF-\beta$, bFGF, PDGF, IGF-1 decreased significantly the cellular proliferation(p<0.05). The amount of decreasing in the cell attachment and proliferation is the highest in at-lGF-1. 5) The cells in control group were flattened and elongated with a few cellular processes in the a light microscope. But, the cells appeared as spherical, plump cells with well developed cellular processes in experimental groups. The cells in PRP and CM had more prominent developed features than recombinant growth factor groups. Conclusions : These findings imply that PRP maximize the cellular activity in early healing period using the synergistic effect, autocrine, paracrine effects of growth factors and increase the rate and degree of bone formation.

X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts

  • Park, Soon-Sun;Kim, Kyoung-A;Lee, Seung-Youp;Lim, Shin-Saeng;Jeon, Young-Mi;Lee, Jeong-Chae
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.571-576
    • /
    • 2012
  • Radiotherapy is considered to cause detrimental effects on bone tissue eventually increasing bone loss and fracture risk. However, there is a great controversy on the real effects of irradiation itself on osteoblasts, and the mechanisms by which irradiation affects osteoblast differentiation and mineralization are not completely understood. We explored how X-ray radiation influences differentiation and bone-specific gene expression in mouse calvarial osteoblasts. Irradiation at 2 Gy not only increased differentiation and mineralization of the cells, but also upregulated the expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin at early stages of differentiation. However, irradiation at higher doses (>2 Gy) did not stimulate osteoblast differentiation, rather it suppressed DNA synthesis by the cells without a toxic effect. Additional experiments suggested that transforming growth factor-beta 1 and runt-transcription factor 2 play important roles in irradiation- stimulated bone differentiation by acting as upstream regulators of bone-specific markers.

Isolation and Characterization of Bud6p, an Actin Interacting Protein, from Yarrowia lipolytica

  • Yunkyoung Song;Cheon, Seon-Ah;Hwang, Ji-Sook;Kim, Jeong-Yoon
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.121-128
    • /
    • 2003
  • The identification of genes involved in true hypha formation is important in the study of mechanisms underlying the morphogenetic switch in yeast. We isolated a gene responsible for the morphogenetic switch in Yarrowia lipolytica, which forms true hyphae in response to serum or N-acetylglucosamine. The isolated gene, encoding 847 amino acids, had sequence identities of 27% and 25% with the Bud6 (Aip3) proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe, respectively. Disruption of this gene, designated YIBUD6, in haploid and diploid strains significantly reduced the ability of Y. lipolytica to switch from the yeast form to the hyphal form in hypha-inducing media. It was also found that YIBud6$\Delta$ mutants were rounder than the wild type when grown in the yeast form. These results indicate that the YIBud6 protein is necessary for hyphal growth and cell polarity in both haploid and diploid Y. lipolytica cells.

Urushiol V Suppresses Cell Proliferation and Enhances Antitumor Activity of 5-FU in Human Colon Cancer Cells by Downregulating FoxM1

  • Jeong, Ji Hye;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.257-264
    • /
    • 2022
  • Colorectal cancer (CRC) is one of the most common malignant tumor. 5-FU is commonly used for the treatment of CRC. However, the development of drug resistance in tumor chemotherapy can seriously reduce therapeutic efficacy of 5-FU. Recent data show that FoxM1 is associated with 5-FU resistance in CRC. FoxM1 plays a critical role in the carcinogenesis and drug resistance of several malignancies. It has been reported that urushiol V isolated from the cortex of Rhus verniciflua Stokes is cytotoxic to several types of cancer cells. However, the underlying molecular mechanisms for its antitumor activity and its potential to attenuate the chemotherapeutic resistance in CRC cells remain unknown. Here, we found that urushiol V could inhibit the cell proliferation and induced S-phase arrest of SW480 colon cancer cells. It inhibited protein expression level of FoxM1 through activation of AMPK. We also investigated the combined effect of urushiol V and 5-FU. The combination treatment reduced FoxM1 expression and consequently reduced cell growth and colony formation in 5-FU resistant colon cancer cells (SW480/5-FUR). Taken together, these result suggest that urushiol V from Rhus verniciflua Stokes can suppress cell proliferation by inhibiting FoxM1 and enhance the antitumor capacity of 5-FU. Therefore, urushiol V may be a potential bioactive compound for CRC therapy.