DOI QR코드

DOI QR Code

Characteristics of film-type crystal growth mechanism of CO2 hydrate

CO2 하이드레이트의 film형 결정성장 거동에 관한 연구

  • Lee, Hyunju (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Soomin (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Ju-Dong (Dongnam Technology Service Division, Korea Institute of Industrial Technology) ;
  • Kim, Yangdo (School of Materials Science and Engineering, Pusan National University)
  • 이현주 (부산대학교 재료공학부) ;
  • 김수민 (고려대학교 신소재공학과) ;
  • 이주동 (한국생산기술연구원 동남권기술지원본부) ;
  • 김양도 (부산대학교 재료공학부)
  • Received : 2013.02.19
  • Accepted : 2013.04.05
  • Published : 2013.04.30

Abstract

Many researches have been carried out to reduce and/or to capture the major global warming gases. Especially, the hydrate formation mechanisms were intensively investigated for carbon dioxide sequestration and storage process applications. In this study, the characteristics of film-type crystal growth mechanism of carbon dioxide hydrate were comprehensively examined. Carbon dioxide hydrate crystal was formed in semi-batch type stir reactor at various pressure conditions while the temperature was fixed to be constant to reduce and minimize the guest gas solubility effects. A supply gas composition was 99.999 % of Carbon dioxide, the observation data was collected by optical microscope adopted CCD camera (Nikon DS-5M/Fi1/2M-U2). This study revealed that the guest gas pressure changes significantly altered the crystal growth mechanism and film growth rate of carbon dioxide hydrate crystal. The critical pressure of the carbon dioxide hydrate of crystal growth mechanism change was found to be 2.0 MPa. The capillary force and gas concentration gradient also significantly changed the film-type crystal growth mechanism of carbon dioxide hydrate crystal.

지구 온난화의 대표적인 주범인 $CO_2$를 저감하기 위하여 많은 연구가 진행되고 있다. 특히 가스 하이드레이트 형성원리를 이용한 $CO_2$ 분리 및 저장 공정이 주목을 받고 있다. 본 연구는 필름형 $CO_2$ 하이드레이트의 결정성장 거동에 관하여 성장 메커니즘을 규명하였다. 다양한 압력조건에서 반회분식 교반 반응기를 이용하여 $CO_2$ 하이드레이트를 형성시켰으며 객체가스의 용해도 차이를 최소화하기 위하여 모든 실험에서 온도는 고정하였다. 공급된 가스는 순도 99.999 %의 $CO_2$ 가스를 사용하였고, CCD 카메라(Nikon DS-5M/Fi1/2M-U2)가 장착된 광학현미경을 사용하여 관찰 결과를 실시간 기록하였다. 실험에 적용되는 압력에 따라서 하이드레이트 성장형태와 성장속도는 매우 큰 차이를 보였다. 특히 2.0 MPa 이상의 압력에서 가장 큰 변화를 관찰하였으며, 이것은 $CO_2$의 농도 차이와 모세관 힘에 의한 것으로 사료된다.

Keywords

References

  1. E.G. Hammerschmidt, "Formation of gas hydrate in natural gas transmission lines", Ind. Eng. Chem. 26(8) (1934) 851. https://doi.org/10.1021/ie50296a010
  2. P. Englezos, "Reviews: Clathrate hydrates", Ind. Eng. Chem. Res. 32(7) (1993) 1251. https://doi.org/10.1021/ie00019a001
  3. H.J. Lee, J.D. Lee, P. Linga, P. Englezos, Y.S. Kim, M.S. Lee and Y.D. Kim, "Gas hydrate formation process for pre-combustion capture of carbon dioxide", Energy 35(6) (2010) 2729. https://doi.org/10.1016/j.energy.2009.05.026
  4. J.-W. Lee, M.-K. Chun, K.-M. Lee, Y.-J. Kim and H. Lee, "Phase equilibria and kinetic behaviour of $CO_2$ hydrate in electrolyte and porous media solutions: Application to ocean sequestration of $CO_2$", Korean J. Chem. Eng. 19(4) (2002) 673. https://doi.org/10.1007/BF02699316
  5. P.G. Brewer, C. Friederich, E.T. Peltzer and F.M. Orr Jr., "Direct experiments on the ocean disposal of fossil fuel $CO_2$", Science 284 (1999) 943. https://doi.org/10.1126/science.284.5416.943
  6. O.R. West, C. Tsouris, S. Lee, S.D. McCallum and L. Liang, "Negatively buoyant $CO_2$-hydrate composite for ocean carbon sequestration" AIChE J. 49(1) (2003) 283. https://doi.org/10.1002/aic.690490127
  7. Y.-T. Seo and H. Lee, "Structure and guest distribution of the mixed carbon dioxide and nitrogen hydrates as revealed by X-ray diffraction and 13C NMR spectroscopy", J. Phys. Chem. B. 108(2) (2004) 530. https://doi.org/10.1021/jp0351371
  8. Y.-T. Seo, I.L. Moudrakovski, J.A. Ripmeester, J.-W. Lee and H. Lee, "Efficient recovery of $CO_2$ from flue gas by clathrate hydrate formation in porous silica gels", Environ. Sci. Technol. 39(7) (2005) 2315. https://doi.org/10.1021/es049269z
  9. E.D. Sloan, "Clathrate hydrates of natural gases", 2nd ed., Marcel Dekker, New York (1998).
  10. H. Teng, A. Yamasaki and Y. Shindo, "Stability of the hydrate layer formed on the surface of a $CO_2$ droplet in high-pressure, low-temperature water", Chemical Engineering Science 51(22) (1996) 4979. https://doi.org/10.1016/0009-2509(96)00358-2
  11. M. Sugaya and Y.H. Mori, "Behaviour of clathrate hydrate formation at the boundary of liquid water and a fluorocarbon in liquid or vapor state", Chemical Engineering Science 51(13) (1996) 3505. https://doi.org/10.1016/0009-2509(95)00404-1
  12. P.C. Lund, Y. Shind, Y. Fujioka and H. Komiyama, "Study of the pseudo-steady-state kinetics of $CO_2$ hydrate formation and stability", Int. J. Chem. Kinet. 26 (1994) 289. https://doi.org/10.1002/kin.550260207
  13. S. Hirai, K. Okazaki, N. Araki, H. Yazawa, H. Ito and K. Hijikata, "Transport phenomena of liquid $CO_2$ in pressurized water flow with clathrate-hydrate at the interface", Energy Convers. Mgmt. 37 (1996) 1073. https://doi.org/10.1016/0196-8904(95)00300-2
  14. Y.H. Mori and T. Mochizuki, "Mass transport across clathrate hydrate films - a capillary permeation model", Chemical Engineering Science 52(20) (1997) 3613. https://doi.org/10.1016/S0009-2509(97)00169-3
  15. R. Ohmura, W. Shimada, T. Uchida, Y. H. Mori, S. Takeya, J. Nagao, H. Minagawa, T. Ebinuma and H. Narita, "Clathrate hydrate crystal growth in liquid water saturated with a hydrate-forming substance : variations in crystal morphology", Philosophical Magazine 84(1) (2004) 1. https://doi.org/10.1080/14786430310001623542
  16. Y.S. Lee, J.D. Lee, B.R. Lee, H.J. Lee, E.K. Lee, S.M. Kim, Y.S. Kim, S.-Y. Yoon and Y.D. Kim, "Crystal growth studies of $SF_6$ clathrate hydrate", J. Kor. Cry. Grow. Cry. Tech. 19(5) (2009) 228.
  17. S.M. Kim, H.J. Lee, B.R. Lee, Y.S. Lee, E.K. Lee, J.D. Lee and Y.D. Kim, "Characteristics of sulfur hexafluoride hydrate film growth at the vapor/liquid interface", J. Kor. Cry. Grow. Cry. Tech. 20(2) (2010) 85. https://doi.org/10.6111/JKCGCT.2010.20.2.085
  18. R.B. Gupta and J.-J. Shim, "Solubility in supercritical carbon dioxide", Taylor & Francis Group, LLC (2007).
  19. E.W. Washburn, "The dynamics of capillary flow", Phys. Rev. 17 (1921) 273. https://doi.org/10.1103/PhysRev.17.273
  20. P. Servio and P. Englezos, "Morphology of methane and carbon dioxide hydrates formed from water droplets", AIChE Journal 49(1) (2003) 269. https://doi.org/10.1002/aic.690490125