DOI QR코드

DOI QR Code

Proteomic and Phenotypic Analyses of a Putative YggS Family Pyridoxal Phosphate-Dependent Enzyme in Acidovorax citrulli

  • Lynn Heo (Department of Plant Science and Technology, Chung-Ang University) ;
  • Yongmin Cho (Department of Plant Science and Technology, Chung-Ang University) ;
  • Junhyeok Choi (Department of Plant Science and Technology, Chung-Ang University) ;
  • Jeongwook Lee (Department of Plant Science and Technology, Chung-Ang University) ;
  • Yoobin Han (Department of Plant Science and Technology, Chung-Ang University) ;
  • Sang-Wook Han (Department of Plant Science and Technology, Chung-Ang University)
  • Received : 2023.03.29
  • Accepted : 2023.04.17
  • Published : 2023.06.01

Abstract

Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.

Keywords

Acknowledgement

We thank J. Kim for their technical help at the BT research facility center, Chung-Ang University. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2020R1A2C1013040), Republic of Korea. This research was also supported by the Chung-Ang University Graduate Research Scholarship in 2022 (awarded to Yongmin Cho).

References

  1. Bahar, O., De la Fuente, L. and Burdman, S. 2010. Assessing adhesion, biofilm formation and motility of Acidovorax citrulli using microfluidic flow chambers. FEMS Microbiol. Lett. 312:33-39. https://doi.org/10.1111/j.1574-6968.2010.02094.x
  2. Bahar, O., Goffer, T. and Burdman, S. 2009. Type IV pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Mol. Plant MicrobeInteract. 22:909-920. https://doi.org/10.1094/MPMI-22-8-0909
  3. Burdman, S., Kots, N., Kritzman, G. and Kopelowitz, J. 2005. Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Dis. 89:1339-1347. https://doi.org/10.1094/PD-89-1339
  4. Choi, H., Fermin, D. and Nesvizhskii, A. I. 2008. Significance analysis of spectral count data in label-free shotgun proteomics. Mol. Cell. Proteomics 7:2373-2385. https://doi.org/10.1074/mcp.M800203-MCP200
  5. Cote, J.-P., French, S., Gehrke, S. S., MacNair, C. R., Mangat, C. S., Bharat, A. and Brown, E. D. 2016. The genome-wide interaction network of nutrient stress genes in Escherichia coli. mBio 7:e01714-16. https://doi.org/10.1128/mBio.01714-16
  6. Darin, N., Reid, E., Prunetti, L., Samuelsson, L., Husain, R. A., Wilson, M., El Yacoubi, B., Footitt, E., Chong, W. K., Wilson, L. C., Prunty, H., Pope, S., Heales, S., Lascelles, K., Champion, M., Wassmer, E., Veggiotti, P., de Crecy-Lagard, V., Mills, P. B. and Clayton, P. T. 2016. Mutations in PROSC disrupt cellular pyridoxal phosphate homeostasis and cause vitamin B6-dependent epilepsy. Am. J. Hum. Genet. 99:1325-1337. https://doi.org/10.1016/j.ajhg.2016.10.011
  7. Davey, M. E. and O'toole, G. A. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64:847-867. https://doi.org/10.1128/MMBR.64.4.847-867.2000
  8. El Qaidi, S., Yang, J., Zhang, J.-R., Metzger, D. W. and Bai, G. 2013. The vitamin B₆ biosynthesis pathway in Streptococcus pneumoniae is controlled by pyridoxal 5'-phosphate and the transcription factor PdxR and has an impact on ear infection. J. Bacteriol. 195:2187-2196. https://doi.org/10.1128/JB.00041-13
  9. Elias, J. E. and Gygi, S. P. 2007. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4:207-214. https://doi.org/10.1038/nmeth1019
  10. Ito, T., Iimori, J., Takayama, S., Moriyama, A., Yamauchi, A., Hemmi, H. and Yoshimura, T. 2013. Conserved pyridoxal protein that regulates Ile and Val metabolism. J. Bacteriol. 195:5439-5449. https://doi.org/10.1128/JB.00593-13
  11. Ito, T., Yamamoto, K., Hori, R., Yamauchi, A., Downs, D. M., Hemmi, H. and Yoshimura, T. 2019. Conserved pyridoxal 5'-phosphate-binding protein YggS impacts amino acid metabolism through pyridoxine 5'-phosphate in Escherichia coli. Appl. Environ. Microbiol. 85:e00430-19.
  12. Jimenez-Guerrero, I., Perez-Montano, F., Da Silva, G. M., Wagner, N., Shkedy, D., Zhao, M., Pizarro, L., Bar, M., Walcott, R., Sessa, G., Pupko, T. and Burdman, S. 2020. Show me your secret(ed) weapons: a multifaceted approach reveals a wide arsenal of type III-secreted effectors in the cucurbit pathogenic bacterium Acidovorax citrulli and novel effectors in the Acidovorax genus. Mol. Plant Pathol. 21:17-37. https://doi.org/10.1111/mpp.12877
  13. Johnson, K. L. and Walcott, R. R. 2013. Quorum sensing contributes to seed-to-seedling transmission of Acidovorax citrulli on watermelon. J. Phytopathol. 161:562-573. https://doi.org/10.1111/jph.12106
  14. Kim, M., Lee, J., Heo L. and Han, S.-W. 2020. Putative bifunctional chorismate mutase/prephenate dehydratase contributes to the virulence of Acidovorax citrulli. Front. Plant Sci. 11:569552.
  15. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-176. https://doi.org/10.1016/0378-1119(95)00584-1
  16. Latin, R. X. and Hopkins, D. L. 1995. Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality. Plant Dis. 79:761-765. https://doi.org/10.1094/PD-79-0761
  17. Lee, J., Heo, L. and Han, S.-W. 2021. Comparative proteomic analysis for a putative pyridoxal phosphate-dependent aminotransferase required for virulence in Acidovorax citrulli. Plant Pathol. J. 37:673-680. https://doi.org/10.5423/PPJ.NT.09.2021.0139
  18. Lee, J., Lee, J., Cho, Y., Choi J. and Han, S.-W. 2022. A putative 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase is involved in the virulence, carbohydrate metabolism, biofilm formation, twitching halo, and osmotic tolerance in Acidovorax citrulli. Front. Plant Sci. 13:1039420.
  19. Lee, Y., Kim, Y., Yeom, S., Kim, S., Park, S., Jeon C. O. and Park, W. 2008. The role of disulfide bond isomerase A (DsbA) of Escherichia coli O157:H7 in biofilm formation and virulence. FEMS Microbiol. Lett. 278:213-222. https://doi.org/10.1111/j.1574-6968.2007.00993.x
  20. Liu, J., Tian, Y., Zhao, Y., Zeng, R., Chen, B., Hu B. and Walcott, R. R. 2019. Ferric uptake regulator (FurA) is required for Acidovorax citrulli virulence on watermelon. Phytopathology 109:1997-2008. https://doi.org/10.1094/PHYTO-05-19-0172-R
  21. Pal, S., Verma, J., Mallick, S., Rastogi, S. K., Kumar A. and Ghosh, A. S. 2019. Absence of the glycosyltransferase WcaJ in Klebsiella pneumoniae ATCC13883 affects biofilm formation, increases polymyxin resistance and reduces murine macrophage activation. Microbiology (Reading) 165:891-904. https://doi.org/10.1099/mic.0.000827
  22. Park, H.-J., Seong, H. J., Sul, W. J., Oh, C.-S. and Han, S.-W. 2017. Complete genome sequence of Acidovorax citrulli strain KACC17005, a causal agent for bacterial fruit blotch on watermelon. Korean J. Microbiol. 53:340-341.
  23. Prunetti, L., El Yacoubi, B., Schiavon, C. R., Kirkpatrick, E., Huang, L., Bailly, M., El Badawi-Sidhu, M., Harrison, K., Gregory, J. F., Fiehn, O., Hanson, A. D. and de Crecy-Lagard, V. 2016. Evidence that COG0325 proteins are involved in PLP homeostasis. Microbiology (Reading) 162:694-706. https://doi.org/10.1099/mic.0.000255
  24. Pustelny, C., Brouwer, S., Musken, M., Bielecka, A., Dotsch, A., Nimtz, M. and Haussler, S. 2013. The peptide chain release factor methyltransferase PrmC is essential for pathogenicity and environmental adaptation of Pseudomonas aeruginosa PA14. Environ. Microbiol. 15:597-609. https://doi.org/10.1111/1462-2920.12040
  25. Rahimi-Midani, A., Kim, J.-O., Kim, J. H., Lim, J., Ryu, J.-G., Kim, M.-K. and Choi, T.-J. 2020. Potential use of newly isolated bacteriophage as a biocontrol against Acidovorax citrulli. Arch. Microbiol. 202:377-389. https://doi.org/10.1007/s00203-019-01754-5
  26. Schaad, N. W., Sowell, G. Jr., Goth, R. W., Colwell, R. R. and Webb, R. E. 1978. Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. Int. J. Syst. Evol. Bacteriobiol. 28:117-125. https://doi.org/10.1099/00207713-28-1-117
  27. Shrestha, R. K., Rosenberg, T., Makarovsky, D., Eckshtain-Levi, N., Zelinger, E., Kopelowitz, J., Sikorski, J. and Burdman, S. 2013. Phenotypic variation in the plant pathogenic bacterium Acidovorax citrulli. PLoS ONE 8:e73189.
  28. Tatusov, R. L., Galperin, M. Y., Natale, D. A. and Koonin, E. V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28:33-36. https://doi.org/10.1093/nar/28.1.33
  29. Tian, Y., Zhao, Y., Wu, X., Liu, F., Hu, B. and Walcott, R. R. 2015. The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of Acidovorax citrulli on melon. Mol. Plant Pathol. 16:38-47. https://doi.org/10.1111/mpp.12159
  30. Vu, H. N., Ito, T. and Downs, D. M. 2020. The role of YggS in vitamin B6 homeostasis in Salmonella enterica is informed by heterologous expression of yeast SNZ3. J. Bacteriol. 202:e00383-20.
  31. Wang, Y., Zhao, Y., Xia, L., Chen, L., Liao, Y., Chen, B., Liu Y., Gong, W., Tian Y. and Hu, B. 2022. YggS encoding pyridoxal 5'-phosphate binding protein is required for Acidovorax citrulli virulence. Front. Microbiol. 12:783862.
  32. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K. and De Ley, J. 1992. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bacteriol. 42:107-119. https://doi.org/10.1099/00207713-42-1-107
  33. Xie, F., Li, G., Wang, Y., Zhang, Y., Zhou, L., Wang, C., Liu, S., Liu, S. and Wang, C. 2017. Pyridoxal phosphate synthases PdxS/PdxT are required for Actinobacillus pleuropneumoniae viability, stress tolerance and virulence. PLoS ONE 12:e0176374.
  34. Zhang, X., Zhao, M., Yan, J., Yang, L., Yang, Y., Guan, W., Walcott, R. and Zhao, T. 2018. Involvement of hrpX and hrpG in the virulence of Acidovorax citrulli strain Aac5, causal agent of bacterial fruit blotch in cucurbits. Front. Microbiol. 9:507.
  35. Zivanovic, M. and Walcott, R. R. 2017. Further characterization of genetically distinct groups of Acidovorax citrulli strains. Phytopathology 107:29-35. https://doi.org/10.1094/PHYTO-06-16-0245-R