References
- Schultze-Mosgau, S., Lehner, B., Rodel, F., Wehrhan, F., Amann, K., Kopp, J., Thorwarth, M., Nkenke, E. and Grabenbauer, G. (2005) Expression of bone morphogenic protein 2/4, transforming growth factor-beta1, and bone matrix protein expression in healing area between vascular tibia grafts and irradiated bone-experimental model of osteonecrosis. Int. J. Radiat. Oncol. Biol. Phys. 61, 1189-1196. https://doi.org/10.1016/j.ijrobp.2004.12.008
- King, A. D., Griffith, J. F., Abrigo, J. M., Leung, S. F., Yau, F. K., Tse, G. M. and Ahuja, A. T. (2010) Osteoradionecrosis of the upper cervical spine: MR imaging following radiotherapy for nasopharyngeal carcinoma. Eur. J. Radiol. 73, 629-635. https://doi.org/10.1016/j.ejrad.2008.12.016
- Matsumura, S., Jikko, A., Hiranuma, H., Deguchi, A. and Fuchihata, H. (1996) Effect of X-ray irradiation on proliferation and differentiation of osteoblast. Calcif. Tissue Int. 59, 307-308. https://doi.org/10.1007/s002239900129
- Gal, T. J., Munoz-Antonia, T., Muro-Cacho, C. A. and Klotch, D. W. (2000) Radiation effects on osteoblasts in vitro: a potential role in osteoradionecrosis. Arch. Otolaryngol. Head Neck Surg. 126, 1124-1128. https://doi.org/10.1001/archotol.126.9.1124
- He, J., Qiu, W., Zhang, Z., Wang, Z., Zhang, X. and He, Y. (2011) Effects of irradiation on growth and differentiation- related gene expression in osteoblasts. J. Craniofac. Surg. 22, 1635-1640. https://doi.org/10.1097/SCS.0b013e31822e5f66
- Shinozaki, K., Hosokawa, Y., Hazawa, M., Kashiwakura, I., Okumura, K., Kaku, T. and Nakayama, E. (2011) Ascorbic acid enhances radiation-induced apoptosis in an HL60 human leukemia cell line. J. Radiat. Res. (Tokyo). 52, 229-237. https://doi.org/10.1269/jrr.10089
- Li, J., Kwong, D. L. and Chan, G. C. (2007) The effects of various irradiation doses on the growth and differentiation of marrow- derived human mesenchymal stromal cells. Pediatr. Transplant. 11, 379-387. https://doi.org/10.1111/j.1399-3046.2006.00663.x
- Chae, H. J., Chae, S. W., Kang, J. S., Bang, B. G., Han, J. I., Moon, S. R., Park, R. K., So, H. S., Jee, K. S., Kim, H. M. and Kim, H. R. (1999) Effect of ionizing radiation on the differentiation of ROS 17/2.8 osteoblasts through free radicals. J. Radiat. Res. (Tokyo). 40, 323-335. https://doi.org/10.1269/jrr.40.323
- Lau, P., Baumstark-Khan, C., Hellweg, C.E. and Reitz, G. (2010) X-irradiation-induced cell cycle delay and DNA double- strand breaks in the murine osteoblastic cell line OCT-1. Radiat. Environ. Biophys. 49, 271-280. https://doi.org/10.1007/s00411-010-0272-6
- Choi, J. Y., Lee, B. H., Song, K. B., Park, R. W., Kim, I. S., Sohn, K. Y., Jo, J. S. and Ryoo, H. M. (1996) Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J. Cell Biochem. 61, 609-618. https://doi.org/10.1002/(SICI)1097-4644(19960616)61:4<609::AID-JCB15>3.0.CO;2-A
- Sawajiri, M., Nomura, Y., Bhawal, U. K., Nishikiori, R., Okazaki, M., Mizoe, J. and Tanimoto, K. (2006) Different effects of carbon ion and gamma-irradiation on expression of receptor activator of NF-kB ligand in MC3T3-E1 osteoblast cells. Bull. Exp. Biol. Med. 142, 618-624. https://doi.org/10.1007/s10517-006-0433-4
- Dudziak, M. E., Saadeh, P. B., Mehrara, B. J., Steinbrech, D. S., Greenwald, J. A., Gittes, G. K. and Longaker, M. T. (2000) The effects of ionizing radiation on osteoblast-like cells in vitro. Plast. Reconstr. Surg. 106, 1049-1061. https://doi.org/10.1097/00006534-200010000-00015
- Delanian, S., Porcher, R., Rudant, J. and Lefaix, J. L. (2005) Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis. J. Clin. Oncol. 23, 8570-8579. https://doi.org/10.1200/JCO.2005.02.4729
- Gevorgyan, A., La Scala, G. C., Neligan, P. C., Pang, C. Y. and Forrest, C. R. (2007) Radiation-induced craniofacial bone growth disturbances. J. Craniofac. Surg. 18, 1001-1007. https://doi.org/10.1097/scs.0b013e31812f7584
- O'Dell, K. and Sinha, U. (2011) Osteoradionecrosis. Oral. Maxillofac. Surg. Clin. North. Am. 23, 455-464. https://doi.org/10.1016/j.coms.2011.04.011
- Sawajiri, M., Takinami, S., Uchida, T., Nomura, Y., Mizoe, J., Banik, S. and Tanimoto, K. (2007) Expression of MMP-13 in osteoblast cells and rat tibia after exposure to gamma rays or accelerated carbon ions. Phys. Med. 23, 73-79. https://doi.org/10.1016/j.ejmp.2007.03.005
- Dare, A., Hachisu, R., Yamaguchi, A., Yokose, S., Yoshiki, S. and Okano, T. (1997) Effects of ionizing radiation on proliferation and differentiation of osteoblast-like cells. J. Dent. Res. 76, 658-664. https://doi.org/10.1177/00220345970760020601
- Camozzi, V., Tossi, A., Simoni, E., Pagani, F., Francucci, C.M. and Moro, L. (2007) Role of biochemical markers of bone remodeling in clinical practice. J. Endocrinol. Invest. 30, 13-17. https://doi.org/10.1007/BF03347390
- Ducy, P. (2011) The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia 54, 1291-1297. https://doi.org/10.1007/s00125-011-2155-z
- Tokuyama, R., Satomura, K., Maeda, E., Kudoh, K., Yamasaki, Y. and Nagayama, M. (2007) Maspin is involved in bone matrix maturation by enhancing the accumulation of latent TGF-beta. J. Bone Miner. Res. 22, 1581-1591. https://doi.org/10.1359/jbmr.070611
- Miyazono, K., Maeda, S. and Imamura, T. (2004) Coordinate regulation of cell growth and differentiation by TGF-beta superfamily and Runx proteins. Oncogene 23, 4232-4237. https://doi.org/10.1038/sj.onc.1207131
- Langdahl, B. L., Carstens, M., Stenkjaer, L. and Eriksen, E. F. (2003) Polymorphisms in the transforming growth factor beta 1 gene and osteoporosis. Bone 32, 297-310. https://doi.org/10.1016/S8756-3282(02)00971-7
- Sowa, H., Kaji, H., Yamaguchi, T., Sugimoto, T. and Chihara, K. (2002) Activations of ERK1/2 and JNK by transforming growth factor beta negatively regulate Smad3-induced alkaline phosphatase activity and mineralization in mouse osteoblastic cells. J. Biol. Chem. 277, 36024-36031. https://doi.org/10.1074/jbc.M206030200
- Stein, G. S. and Lian, J. B. (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr. Rev. 14, 424-442. https://doi.org/10.1210/edrv-14-4-424
- Baek, W. Y. and Kim, J. E. (2011) Transcriptional regulation of bone formation. Front. Biosci. (Schol Ed). 3, 126-135. https://doi.org/10.2741/s138
- Komori, T. (2011) Signaling networks in RUNX2- dependent bone development. J. Cell Biochem. 112, 750-755. https://doi.org/10.1002/jcb.22994
- Jeong, J. H. and Choi, J. Y. (2011) Interrelationship of Runx2 and estrogen pathway in skeletal tissues. BMB Rep. 44, 613-618. https://doi.org/10.5483/BMBRep.2011.44.10.613
- Kim, H. N., Min, W. K., Jeong, J. H., Kim, S. G., Kim, J. R., Kim, S. Y., Choi, J. Y. and Park, B. C. (2011) Combination of Runx2 and BMP2 increases conversion of human ligamentum flavum cells into osteoblastic cells. BMB Rep. 44, 446-451. https://doi.org/10.5483/BMBRep.2011.44.7.446
- Ito, Y. and Miyazono, K. (2003) RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr. Opin. Genet. Dev. 13, 43-47. https://doi.org/10.1016/S0959-437X(03)00007-8
- Alliston, T., Choy, L., Ducy, P., Karsenty, G. and Derynck, R. (2001) TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO. J. 20, 2254-2272. https://doi.org/10.1093/emboj/20.9.2254
Cited by
- Low-Dose X-Ray Irradiation Promotes Osteoblast Proliferation, Differentiation and Fracture Healing vol.9, pp.8, 2014, https://doi.org/10.1371/journal.pone.0104016
- Activation of canonical Wnt/β-catenin signaling inhibits H2O2-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts vol.411, pp.1-2, 2016, https://doi.org/10.1007/s11010-015-2570-4
- Local delivery of COMP-angiopoietin 1 accelerates new bone formation in rat calvarial defects vol.103, pp.9, 2015, https://doi.org/10.1002/jbm.a.35439
- DNA–PKcs–SIN1 complexation mediates low-dose X-ray irradiation (LDI)-induced Akt activation and osteoblast differentiation vol.453, pp.3, 2014, https://doi.org/10.1016/j.bbrc.2014.09.088
- Increased EZH2 and decreased osteoblastogenesis during local irradiation-induced bone loss in rats vol.6, pp.1, 2016, https://doi.org/10.1038/srep31318
- Differences in responses to X-ray exposure between osteoclast and osteoblast cells 2017, https://doi.org/10.1093/jrr/rrx026
- Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation vol.57, pp.1, 2013, https://doi.org/10.1016/j.bone.2013.08.014
- A report from Fukushima: an assessment of bone health in an area affected by the Fukushima nuclear plant incident vol.31, pp.6, 2013, https://doi.org/10.1007/s00774-013-0482-5
- N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway vol.48, pp.11, 2015, https://doi.org/10.5483/BMBRep.2015.48.11.112
- Long-term loss of osteoclasts and unopposed cortical mineral apposition following limited field irradiation vol.33, pp.3, 2015, https://doi.org/10.1002/jor.22761
- Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of Nrf2/HO-1 pathway vol.410, pp.1-2, 2015, https://doi.org/10.1007/s11010-015-2559-z
- COMP-Ang1 prevents periodontitic damages and enhances mandible bone growth in an experimental animal model vol.92, 2016, https://doi.org/10.1016/j.bone.2016.09.002
- Recombinant human IGF-1 produced by transgenic plant cell suspension culture enhances new bone formation in calvarial defects vol.36, 2017, https://doi.org/10.1016/j.ghir.2017.07.003
- Therapeutic ionizing radiation induced bone loss: a review of in vivo and in vitro findings vol.59, pp.6, 2018, https://doi.org/10.1080/03008207.2018.1439482
- External Beam Irradiation Preferentially Inhibits the Endochondral Pathway of Fracture Healing vol.476, pp.10, 2018, https://doi.org/10.1097/CORR.0000000000000395