• Title/Summary/Keyword: Forest land

Search Result 1,643, Processing Time 0.027 seconds

Vegetation Classification and Distributional Pattern in Damyang Riverine Wetland (담양하천습지의 식생유형과 분포양상)

  • Ahn, Kyunghwan;Lim, Jeongcheol;Lee, Youlkyung;Choi, Taebong;Lee, Kwangseok;Im, Myoungsoon;Go, Youngho;Suh, Jaehwa;Shin, Youngkyu;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.2
    • /
    • pp.89-102
    • /
    • 2016
  • Damyang riverine wetland was designated as a wetland protected area in 2004; that is located in the Yeongsan river mainstream. Total 30 phytosociological releves at field studies were classified with 22 vegetation types including of 101 species (unidentified 1 species). Legends of actual vegetation map were separated by 6 types; riparian forest, substitute vegetation, synanthropic vegetation, wet meadow vegetation, open water, an area of wetland vegetation is about 35 % ($386,841.86m^2$). Results of this study area as follows. The plant society of Damyang riverine wetland was conjectured that it was formed by rapidly water environment change with installed weir on the upstream of protected area and operating of Damyang dam on top of the basin. Until recently, the terrace land on the river was used to cultivate, but that would be formed fallow vegetation scenery on riverfront caused by no cultivation after designated protected area. Paspalum distichum var. indutum community designated as invasive alien plant by Korea Ministry of Environment was widely developed and Myriophyllum spicatumunrecorded in the country as newly alien species was discovered in the study zone. The plants as lapped over developing environment for Leersia japonica must be occupied habitat of native plant species having similar niche. The various plant society in Damyang riverine wetland should be developed because of environmental changes, disturbances and damages of stream.

Collection of Soil Actinomycetes from Cheju Island and Screening for their Antibacterial Activities (제주도 토양방선균의 수집과 항균물질 생산균의 선별)

  • Chung, Wan-Seok;Kim, Chang-Jin;Ko, Young-Hwan
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.99-104
    • /
    • 1999
  • Soil actinomycetes of 703 strains were isolated from 25 sampling points in Cheju Island using 4 different media. Arginine glycerol salts agar containing soil extract was found to be the best medium for the isolation of soil actinomycetes. Soil samples from pasture land showed higher population and diversity of the actinomycetes than those from citrus field, forest, island, hill or valley. When the antibacterial activity of the 526 isolates was tested against three bacterial strains, Escherichia coli, Staphylococcus aureus and Pseudomonas solanacearum the frequency of the isolates with antibacterial activity varied much depending upon the media used for isolation and cultivation. BL106Ba, one of the 10 isolates that showed antibacterial activity against all the above 3 test strains, was chosen based upon the pH and heat stability of its antibacterial metabolites, and was identified as Streptomyces sp. based upon its cultural, morphological and physiological characteristics. The partially purified white crystalline substance obtained from the culture supematant of BL1063a through cation exchange chromatography(AG MP-50) and three times consecutive gel filtration(Sephadex G-10) showed high antimicrobial activity against gram positive and negative bacteria, but low activity against yeasts. The partially purified substance was found to contain at least four different compounds with antibacterial activity by both thin layer chromatography and high performance liquid chromatography.

  • PDF

Groundwater Recharge Estimation for the Gyeongan-cheon Watershed with MIKE SHE Modeling System (MIKE SHE 모형을 이용한 경안천 유역의 지하수 함양량 산정)

  • Kim, Chul-Gyum;Kim, Hyeon-Jun;Jang, Cheol-Hee;Im, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.459-468
    • /
    • 2007
  • To estimate the groundwater recharge, the fully distributed parameter based model, MIKE SHE was applied to the Gyeongan-cheon watershed which is one of the tributaries of Han River Basin, and covers approximately $260km^2$ with about 49 km main stream length. To set up the model, spatial data such as topography, land use, soil, and meteorological data were compiled, and grid size of 200m was applied considering computer ability and reliability of the results. The model was calibrated and validated using a split sample procedure against 4-year daily stream flows at the outlet of the watershed. Statistical criteria for the calibration and validation results indicated a good agreement between the simulated and observed stream flows. The annual recharges calculated from the model were compared with the values from the conventional groundwater recession curve method, and the simulated groundwater levels were compared with the observed values. As a result, it was concluded that the model could reasonably simulate the groundwater level and recharge, and could be a useful tool for estimating spatially/temporally the groundwater recharges, and enhancing the analysis of the watershed water cycle.

Calculation on Pure Sediment Volume at Namgang Dam Basin by Echo-sounder based on NTRIP Service (NTRIP 기반 음향측심기를 이용한 남강댐 유역의 순퇴적량 산정)

  • Lee, Suk-Bae;Kim, Ki-Heung;Park, Jae-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.251-257
    • /
    • 2013
  • Bathymetry sounding or water depth measurement is becoming more and more sophisticated with the increasing demand in accuracy, resolution and coverage in the recent years. Single beam echo sounding is still utilized to gather single line bathymetric profile in many surveys as ever, although there is an increasing demand for multi-beam echo sounding. Single beam echo sounder system acquires single line profiles of water depth as the vessel travel along the survey line. In this study, we performed single beam echo sounding with GNSS receiver for hydrographic survey at Namgang dam basin to calculate pure sediment. Unlike traditional research, we used not field reference station but NTRIP service of the reference station of DGNSS(Differential Global Navigation Satellite System) Central Office in this GNSS survey. The calculation results show that scouring volume is $603,650m^3$, sediment volume is $3,913,750m^3$ and so pure sediment volume is $3,310,100m^3$ at Namgang dam basin. And the availability of the NTRIP service of the DGNSS Central Office for echo sounding in land area has been confirmed in this study.

A Study on the Evaluation of Biotope Preservation Value in District Unit - Case Study in Sinseo-Dong, Daegu - (지구단위 차원에서의 비오톱 보전가치평가 연구 - 대구광역시 신서동 택지개발 사업지구를 사례로 -)

  • Cho, Hyun-Ju;Ra, Jung-Hwa;Park, In-Hwan;Kim, Soo-Bong;Ryu, Yeon-Su;Jang, Gab-Sue
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.5
    • /
    • pp.38-59
    • /
    • 2008
  • This research has a meaning to provide basic data for eco-friendly way of district unit plans and ecological landscape planning by evaluation of biotope preservation value at the level of district unit and designating land development of the site, the whole area of Sinseo-dong (Dong-gu, Daegu metropolitan city) for research site. The summary of analysis result is as follows. As a result of classification of biotope types on the research site, it is divided into 11 biotope groups such as a residential biotope group and 51 specific biotope types which is subordinate to the groups. As a result of the first value assessment on classified biotope types, there are 16 types of natural rivers which is full of vegetation as a I class. Also it is analysed as 9 types of IIclass, 14 of IIIclass, 8 of IVclass, and 4 of Vclass. In particular, in light of a wildlife habitat, EB, in case of broad-leaved tree of mixed forest assessed as a II class, was classified into Iclass which is one-step upgraded as a final class with the analysis as there is a structural characteristic (more than 71% of low density, 50 years of age-class). As a result of second assessment, it is analysed that there are 17 special sites (1a,1b) and 33 special sites (2a, 2b, 2c) respectively for preservation of species and biotope. Particularly, in case of the No. 27 space, it was assessed that it has the value of about medium (IIIclass) level, but its value was upgraded with the on-spot detailed investigation that most of Aristolochia contorta, designated as a rare plant by Ministry of Environment, is growing. It is regarded that the above-mentioned research result on evaluation of biotope preservation value is expected to provide very important basic materials for future district unit plans and smooth integration with landscape ecology plans and eco-friendly space development.

A Study of Mounding Classification Analysis & Scale Calculation in Waterside Parks and Green Areas (수변 공원녹지의 마운딩 유형 및 규모산정 연구)

  • An, Byung-Chul;Bahn, Gwon-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.4
    • /
    • pp.77-87
    • /
    • 2017
  • In this study, we investigated the physical form of planting foundation of the parks and green spaces in the waterside of Korea and classified them into groups showing common features. It was clssified into 7 kinds of parks and green spaces of 27 waterside parks in Korea including landscape, ecology, art, shields, site boundaries, windbreaks, and soundproofing. As a result, the study was carried out on the detailed type and size estimation through the sampling survey of planting foundation of landscape and ecological type mounding which can be statistically analyzed. Landscape and ecological mounding have the characteristics of securing the ecological stability of the waterside planting areas and the diversity of planting landscape. It is possible to create a green landscape through various terrain changes such as enclosing, focusing, and panoramic view. The physical characteristics of ecological and landscape type mounding can be expressed as height, width, and length And physical data can appear in various forms and sizes depending on the purpose and function of the buffer effect of the land use in the waterside planting areas, the landscape creation, the ecological buffer. In this study, the range of the physical scale for landscape and ecological mounding of waterside parks and green spaces was calculated. The range of the mounding height was analyzed to be less than 1.25m and more than 1.25m and the average height was 0.74~1.08m and 1.75~2.75m respectively. In addition, the range of width of mounding was less than 6.13m, 6.13~17.5m, and more than 17.5m, and the average width of each was 3.45~4.95m, 7.05~10.85m and 31.54~51.54m respectively. The range for the length of mounding was less than 50m, 50~500m, and more than 500m. The mean length of each mounding was 34.0m, 116.3m and 955.8m. It is difficult to distinguish the difference between the waterside planting areas and the urban greenery in the purpose and function of landscape and ecological mounding. However, considering the average distance of 60m from the waterside and the average height of 1.26m, we can conclud that opened planting foundation is prefered to high mounding designs in waterside planting areas. It is expected that the results presented for the improvement of the logical and spatial value of the waterside parks and green areas planting foundation design can be served as the basic data helpful for practical application in landscape architecture planning and design.

LiDAR Ground Classification Enhancement Based on Weighted Gradient Kernel (가중 경사 커널 기반 LiDAR 미추출 지형 분류 개선)

  • Lee, Ho-Young;An, Seung-Man;Kim, Sung-Su;Sung, Hyo-Hyun;Kim, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.

Development of Species Distribution Models and Evaluation of Species Richness in Jirisan region (지리산 지역의 생물종 분포모형 구축 및 종풍부도 평가)

  • Kwon, Hyuk Soo;Seo, Chang Wan;Park, Chong Hwa
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2012
  • Increasing concern about biodiversity has lead to a rise in demand on the spatial assessment of biological resources such as biodiversity assessment, protected area selection, habitat management and restoration in Korea. The purpose of this study is to create species richness map through data collection and modeling techniques for wildlife habitat assessment. The GAM (Generalized Additive Model) is easy to interpret and shows better relationship between environmental variables and a response variable than an existing overlap analysis and GLM (Generalized Linear Model). The study area delineated by a large watershed contains Jirisan national park, Mt. Baekun and Sumjin river with three kinds of protected areas (a national park, a landscape ecology protected area and an otter protected area). We collected the presence-absence data for wildlife (mammals and birds) using a stratified random sampling based on a land cover in the study area and implemented natural and socio-environmental data affecting wildlife habitats. After doing a habitat use analysis and specifying significant factors for each species, we built habitat suitability models using a presence-absence model and created habitat suitability maps for each species. Biodiversity maps were generated by taxa and all species using habitat suitability maps. Significant factors affecting each species habitat were different according to their habitat selection. Although some species like a water deer or a great tit were distributed at the low elevation, most potential habitats for mammals and birds were found at the edge of a national park boundary or near a forest around the medium elevation of a mountain range. This study will be used for a basis on biodiversity assessment and proected area selection carried out by Ministry of Environment.

Determination of Optimum Design Capacity of Bio-retention for Improvement of Urban Water Cycle (도시 물 순환 개선을 위한 생태저류지의 최적설계용량 결정)

  • Lee, Okjeong;Choi, Jeonghyeon;Lee, Jeonghoon;Kim, Sangdan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.745-753
    • /
    • 2017
  • In this study, a design strategy is proposed to restore the distorted urban water cycle to the natural water cycle through the LID facility. This is accomplished by determining the optimal LID facility design capacity through which flow duration curves remain the same before and after urban development. A part of the Noksan National Industrial Complex in Busan was selected as the study area and EPA SWMM was constructed to simulate long-term stormwater for various land use scenarios and LID facility design capacity. In the case that the study area was assumed to be a forest area or an agricultural area before urban development, it was found that it was necessary to allocate 7.3% or 5.5% of the impervious area to the area of the bio-retention in order for the flow duration curve to remain the same as before urban development. As a result of the sensitivity analysis of the bio-retention design capacity according to regional rainfall characteristics, the design capacity of 3.8~5.5% of impervious area is needed for the development of agriculture area. Therefore, it can be seen that the optimum capacity can be significantly different according to regional rainfall characteristics. On the other hand, as a result of analyzing the sensitivity of the design capacity according to the variation of the depth of each layer constituting the bio-retention and the size of contributing catchment area, the sensitivity of the optimal design capacity with respect to the design specifications of the bio-retention and the size of contributing catchment area was not significant.

Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng

  • Xiao, Chunping;Yang, Limin;Zhang, Lianxue;Liu, Cuijing;Han, Mei
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Background: Panax ginseng cannot be cultivated on the same land consecutively for an extended period, and the underlying mechanism regarding microorganisms is still being explored. Methods: Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and BIO-LOG methods were used to evaluate the microbial genetic and functional diversity associated with the P. ginseng rhizosphere soil in various cultivation ages and modes. Results: The analysis of microbial diversity using PCR-DGGE showed that microbial communities were significantly variable in composition, of which six bacterial phyla and seven fungal classes were detected in P. ginseng soil. Among them, Proteobacteria and Hypocreales dominated. Fusarium oxysporum, a soilborne pathogen, was found in all P. ginseng soil samples except R0. The results from functional diversity suggested that the microbial metabolic diversity of fallow soil abandoned in 2003was the maximum and transplanted soil was higher than direct-seeding soil and the forest soil uncultivated P. ginseng, whereas the increase in cultivation ages in the same mode led to decreases in microbial diversity in P. ginseng soil. Carbohydrates, amino acids, and polymers were the main carbon sources utilized. Furthermore, the microbial diversity index and multivariate comparisons indicated that the augmentation of P. ginseng cultivation ages resulted in decreased bacterial diversity and increased fungal diversity, whereas microbial diversity was improved strikingly in transplanted soil and fallow soil abandoned for at least one decade. Conclusion: The key factors for discontinuous P. ginseng cultivation were the lack of balance in rhizosphere microbial communities and the outbreak of soilborne diseases caused by the accumulation of its root exudates.