• 제목/요약/키워드: Foreground Subtraction

검색결과 40건 처리시간 0.024초

Probabilistic Background Subtraction in a Video-based Recognition System

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권4호
    • /
    • pp.782-804
    • /
    • 2011
  • In video-based recognition systems, stationary cameras are used to monitor an area of interest. These systems focus on a segmentation of the foreground in the video stream and the recognition of the events occurring in that area. The usual approach to discriminating the foreground from the video sequence is background subtraction. This paper presents a novel background subtraction method based on a probabilistic approach. We represent the posterior probability of the foreground based on the current image and all past images and derive an updated method. Furthermore, we present an efficient fusion method for the color and edge information in order to overcome the difficulties of existing background subtraction methods that use only color information. The suggested method is applied to synthetic data and real video streams, and its robust performance is demonstrated through experimentation.

Background Subtraction in Dynamic Environment based on Modified Adaptive GMM with TTD for Moving Object Detection

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.372-378
    • /
    • 2015
  • Background subtraction is the first processing stage in video surveillance. It is a general term for a process which aims to separate foreground objects from a background. The goal is to construct and maintain a statistical representation of the scene that the camera sees. The output of background subtraction will be an input to a higher-level process. Background subtraction under dynamic environment in the video sequences is one such complex task. It is an important research topic in image analysis and computer vision domains. This work deals background modeling based on modified adaptive Gaussian mixture model (GMM) with three temporal differencing (TTD) method in dynamic environment. The results of background subtraction on several sequences in various testing environments show that the proposed method is efficient and robust for the dynamic environment and achieves good accuracy.

동적 환경에서의 효과적인 움직이는 객체 추출 (An effective background subtraction in dynamic scene.)

  • 한재혁;김용진;유세운;이상화;박종일
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.631-636
    • /
    • 2009
  • 컴퓨터 비전 분야에서 전경을 추출하기 위한 영역 분할(segmentation) 방법에 대한 연구가 활발히 진행되어 왔다. 특히, 전경이 배제된 배경 영상과 현재 프레임의 차이를 이용하여 전경을 추출하는 배경 차분(background subtraction) 방법은 요구하는 계산량에 비해 우수한 품질의 전경 추출이 가능하므로 실시간 처리가 필요한 비전 시스템에 다양하게 응용되고 있다. 그러나 배경 차분 방법만을 이용하여서는 배경이 동적으로 변하는 환경에서 정확한 전경을 추출해 내지 못하는 단점이 있다. 본 논문에서는 정적인 배경과 동적인 배경이 공존하는 환경에서 영역 분할을 효과적으로 수행하는 방법을 제안한다. 제안된 방법은 정적인 배경 영역에 대해서는 기존의 배경 차분 방법을 이용하여 전경을 추출하고, 동적인 배경 영역에 대해서는 깊이 정보를 이용하여 전경을 추출하는 하이브리드 방식을 사용한다. 정적인 배경에 동적인 영상을 프로젝터로 투영하는 환경에서 제안된 방법의 효율성을 검증하였다.

  • PDF

개선된 다중 구간 샘플링 배경제거 알고리즘 (An Improved Multiple Interval Pixel Sampling based Background Subtraction Algorithm)

  • 무하마드 타릭 마흐무드;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.1-6
    • /
    • 2019
  • Foreground/background segmentation in video sequences is often one of the first tasks in machine vision applications, making it a critical part of the system. In this paper, we present an improved sample-based technique that provides robust background image as well as segmentation mask. The conventional multiple interval sampling (MIS) algorithm have suffer from the unbalance of computation time per frame and the rapid change of confidence factor of background pixel. To balance the computation amount, a random-based pixel update scheme is proposed and a spatial and temporal smoothing technique is adopted to increase reliability of the confidence factor. The proposed method allows the sampling queue to have more dispersed data in time and space, and provides more continuous and reliable confidence factor. Experimental results revealed that our method works well to estimate stable background image and the foreground mask.

Background Subtraction using Random Walks with Restart

  • Kim, Tae-Hoon;Lee, Kyoung-Mu;Lee, Sang-Uk
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.63-66
    • /
    • 2009
  • Automatic segmentation of foreground from background in video sequences has attracted lots of attention in computer vision. This paper proposes a novel framework for the background subtraction that the foreground is segmented from the background by directly subtracting a background image from each frame. Most previous works focus on the extraction of more reliable seeds with threshold, because the errors are occurred by noise, weak color difference and so on. Our method has good segmentations from the approximate seeds by using the Random Walks with Restart (RWR). Experimental results with live videos demonstrate the relevance and accuracy of our algorithm.

  • PDF

배경분리 방법에 의한 이동 물체 검출에서 개선된 색정보 정규화 기법에 관한 연구 (A Study on the Revised Method using Normalized RGB Features in the Moving Object Detection by Background Subtraction)

  • 박종범
    • 한국ITS학회 논문지
    • /
    • 제12권6호
    • /
    • pp.108-115
    • /
    • 2013
  • 영상취득 장치를 이용한 지능화된 감시 장치의 개발 기술 또한 발전하고 있다. 이 분야의 기술 영역은 감시하고 있는 장소에 어떤 사람이나 물체를 탐지하는 전경 분리 기술과 사람이나 물체의 이동 경로를 파악하는 추적 기술로 나뉜다. 본 논문에서는 이동체를 탐지하는 기술로서 잡음이나 조도의 변화에 비교적 안정적인 엔진개발을 위한 개선된 알고리즘을 제안한다. 논문의 제안 알고리즘은 사람이나, 동물, 또는 비교적 저속 운행 중인 차량 등의 탐지에 적합한 모델로서, 조도의 변화나 잡음에 안정적이면서 실시간 처리가 가능한 방법을 고안하는 데 주안점을 두고 있다.

RGB Motion Segmentation using Background Subtraction based on AMF

  • 김윤호
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권2호
    • /
    • pp.81-87
    • /
    • 2013
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

RGB Motion Segmentation using Background Subtraction based on AMF

  • 김윤호
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권1호
    • /
    • pp.61-67
    • /
    • 2014
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter(AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

지역 인테그럴 히스토그램을 사용한 빠르고 강건한 전경 추출 방법 (Fast foreground extraction with local Integral Histogram)

  • 장동현;김향화;김태용
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.623-628
    • /
    • 2008
  • 본 논문에서는 비전 기반 게임 인터페이스를 위한 배경영역으로부터 전경영역을 추출하기 위해 빠르고 강건한 새로운 방법을 소개한다. Background Subtraction 방법은 추적하고자 하는 이미지의 특징을 추출하기 전에 필수적으로 거쳐야 하는 전처리 과정이다. 이를 위해 본 논문에서는 이미지를 지역 셀로 나누어 가우시안 커널이 적용된 Local Histogram을 계산하고 히스토그램의 Bhattacharyya 거리를 계산하여 전경확률을 결정한다. 이처럼 지역적 히스토그램에 기반한 방법은 급격한 조명변화나 잡음 또는 작은 배경오브젝트의 움직임에 부분적으로 강간함을 보인다. 히스토그램을 계산하는데에서 Multi-Scaled Integral Histogram을 사용하여 잡음을 억제하면서 계산의 속도를 높였다.

  • PDF