DOI QR코드

DOI QR Code

A Study on the Revised Method using Normalized RGB Features in the Moving Object Detection by Background Subtraction

배경분리 방법에 의한 이동 물체 검출에서 개선된 색정보 정규화 기법에 관한 연구

  • 박종범 (한양여자대학교 정보경영과)
  • Received : 2013.10.07
  • Accepted : 2013.11.12
  • Published : 2013.12.31

Abstract

A developed skill of an intelligent CCTV is also advancing by using its Image Acquisition Device. In this field, area for technique can be divided into Foreground Subtraction which detects individuals and objects in a potential observing area and a tracing technology which figures out moving route of individuals and objects. In this thesis, an improved algorism for a settled engine development, which is stable to change in both noise and illumination for detecting moving objects is suggested. The proposed algorism from this thesis is focused on designing a stable and real time processing method which is perfect model in detecting individuals, animals, and also low-speeding transports and catching a change in an illumination and noise.

영상취득 장치를 이용한 지능화된 감시 장치의 개발 기술 또한 발전하고 있다. 이 분야의 기술 영역은 감시하고 있는 장소에 어떤 사람이나 물체를 탐지하는 전경 분리 기술과 사람이나 물체의 이동 경로를 파악하는 추적 기술로 나뉜다. 본 논문에서는 이동체를 탐지하는 기술로서 잡음이나 조도의 변화에 비교적 안정적인 엔진개발을 위한 개선된 알고리즘을 제안한다. 논문의 제안 알고리즘은 사람이나, 동물, 또는 비교적 저속 운행 중인 차량 등의 탐지에 적합한 모델로서, 조도의 변화나 잡음에 안정적이면서 실시간 처리가 가능한 방법을 고안하는 데 주안점을 두고 있다.

Keywords

References

  1. Y.J. Kim, D.H. Kim, "Smart Phone Based Image Processing Methods for Motion Detection of a Moving Object via a Network Camera," Journal of Control. Robotics and Systems, vol. 19, no. 1, pp.65-71, 2013. https://doi.org/10.5302/J.ICROS.2013.19.1.065
  2. C. Stauffer and W.E.L. Grimson, "Adaptive Background Mixture Models for Real-Time Tracking," Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp.246-252, 1999.
  3. Image Processing Toolbox, Chapter 9, Morphological Operations, The Mathworks, 2001.
  4. B. GoldlüFcke and M.A. Magnor, "Joint 3D Reconstruction and Background Separation in Multiple Views using Graph Cuts," Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp.683-688, 2003.
  5. M. Sormann, C. Zach, and K. Karner, "Graph Cut based Multiple View Segmentation for 3D Reconstruction," Proceedings of IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, pp.1085-1092, 2006.
  6. A. Perring, R. Szewczyk, W. Wen, D. Culler and J. D. Tygar, "Spins: Security Protocols for Sensor Networks," Wireless Networking, pp.521-534, 2002.
  7. Y-P. Tsia, C-H. Ko, Y-P. Huang, and Z-C. Shih, "Background Removal of Multiview Images by Learning Shape Priors," IEEE Transactions on Image Processing, vol. 16, no. 10, pp.2607-2616, 2007. https://doi.org/10.1109/TIP.2007.904465
  8. N. Campbell, G. Vogiatzis, C. Hernandez, and R. Cipolla, "Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts," Proceedings of British Machine Vision Conference, vol. 1, pp.530-539, 2007.
  9. Ojala, T., Pietikainen, M. and Maenpaa, T. (2002), Multiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence. 24(7): 971-987. https://doi.org/10.1109/TPAMI.2002.1017623
  10. http://www.ee.oulu.fi/research/imag/exture/lbp/abou t/LBP%20Methodology.pdf

Cited by

  1. Traffic Sign Recognition using SVM and Decision Tree for Poor Driving Environment vol.18, pp.4, 2014, https://doi.org/10.7471/ikeee.2014.18.4.485
  2. A Study on the Background Image Updating Algorithm for Detecting Fast Moving Objects vol.15, pp.4, 2016, https://doi.org/10.12815/kits.2016.15.4.153
  3. LiDAR 센서를 활용한 배회 동선 검출 알고리즘 개발 vol.16, pp.6, 2017, https://doi.org/10.12815/kits.2017.16.6.01