• Title/Summary/Keyword: Forcing

Search Result 1,000, Processing Time 0.033 seconds

Joint Beamforming and Jamming for Physical Layer Security

  • Myung, Jungho;Heo, Hwanjo;Park, Jongdae
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.898-905
    • /
    • 2015
  • In this paper, we consider a joint beamforming and jamming design to enhance physical layer security against potential multiple eavesdroppers in a multiple-input and single-output cellular broadcast channel. With perfect channel state information at the base station, we propose various design approaches to improve the secrecy of the target user. Among the proposed approaches, the combined beamforming of maximum ratio transmission and zero-forcing transmission with a combination of maximum ratio jamming and zero-forcing jamming (MRT + ZFT with MRJ + ZFJ) shows the best security performance because it utilizes the full transmit antenna dimensions for beamforming and jamming with an efficient power allocation. The simulation results show that the secrecy rate of this particular proposed approach is better than the rates of the considered conventional approaches with quality-of-service and outage probability constraints.

A Study about Optimization of Laser_repair Condition in EDS Area to Improve the Speed Parameter of High Speed DRAM (High Speed DRAM의 Speed 특성 향상을 위한 EDS Laser_Repair Condition 최적화 방안 연구)

  • Kim, Li-Soon;Han, Young-Shin;Lee, Chil-Gee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.11
    • /
    • pp.1-6
    • /
    • 2002
  • This study is about optimization of Laser Repair Condition in EDS Line to improve AC and DC characteristic of high speed DRAM. The margin of AC parameter can be improved by forcing the proper DC generator levels and also improved by cutting the optional fuse about characteristics.

Existence and Uniqueness of Solutions for the Semilinear Fuzzy Integrodifferential Equations with Nonlocal Conditions and Forcing Term with Memory

  • Kwun, Young-Chel;Park, Jong-Seo;Kim, Seon-Yu;Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.288-292
    • /
    • 2006
  • Many authors have studied several concepts of fuzzy systems. Balasubramaniam and Muralisankar (2004) proved the existence and uniqueness of fuzzy solutions for the semilinear fuzzy integrodifferential equation with nonlocal initial condition. Recently, Park, Park and Kwun (2006) find the sufficient condition of nonlocal controllability for the semilinear fuzzy integrodifferential equation with nonlocal initial condition. In this paper, we study the existence and uniqueness of solutions for the semilinear fuzzy integrodifferential equations with nonlocal condition and forcing term with memory in $E_{N}$ by using the concept of fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in $E_{N}$.

Approximate ML Detection with the Best Channel Matrix Selection for MIMO Systems

  • Jin, Ji-Yu;Kim, Seong-Cheol;Park, Yong-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.280-284
    • /
    • 2008
  • In this paper, a best channel matrix selection scheme(BCMS) is proposed to approximate maximum likelihood(ML) detection for a multiple-input multiple-output system. For a one stage BCMS scheme, one of the transmitted symbols is selected to perform ML detection and the other symbols are detected by zero forcing(ZF). To increase the diversity of the symbols that are detected by ZF, multi-stage BCMS detection scheme is used to further improve the system performance. Simulation results show that the performance of the proposed BCMS scheme can approach that of ML detection with a significant reduction in complexity.

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

An Efficient User Selection Algorithm in Downlink Multiuser MIMO Systems with Zero-Forcing Beamforming (하향링크 다중 사용자 MIMO 시스템에서의 Zero-Forcing 빔 형성을 이용한 효과적인 사용자 선택 기법)

  • Go, Hyun-Sung;Oh, Tae-Youl;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.494-499
    • /
    • 2009
  • In this paper, we provide an efficient method of user selection for achieving the maximum system throughput in downlink multiuser Multiple-Input Multiple-Output (MIMO) systems. A proposed method is for selecting a fine user set only with powers of each user channel and angles between them. This algorithm is simpler than SUS because there is no considering about the optimal value of correlation. The proposed method finds the user set toward maximizing system throughput, so it has high performance.

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.117-124
    • /
    • 2022
  • In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.

Development of The New Analysis Methodology for Comprehensive Vibration Assessment Program for Reactor Internals (원자로 내부구조물 종합진동평가 고유 해석방법론 개발)

  • Do-young Ko;Kyu-hyung Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • This paper describes a newly-developed analysis methodology in comprehensive vibration assessment program (CVAP) of reactor internals to develop a valid-prototype for the design of nuclear power plants. The new analysis methodology developed in this study will be confirmed through a scale model testing (SMT). Based on the measurements obtained from dynamic pressure transducers in the SMT, a new non-dimensional equation is developed to apply the forcing functions at reactor internals for the prototype. In addition to the new non-dimensional equation, a computational fluid dynamics(CFD) is used to develop the application of the hydraulic loads at reactor internals for the prototype.